
CSRI SUMMER PROCEEDINGS 2007

The Computer Science Research Institute
at Sandia National Laboratories

Editors:
Michael L. Parks and S. Scott Collis

Sandia National Laboratories

December 6, 2007

SAND2007-7977

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed-Martin Company, for the United States Department of Energy

under Contract DE-AC04-94AL85000.

ii CSRI Summer Proceedings 2007

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represent that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

M.L. Parks and S.S. Collis iii

Preface
The Computer Science Research Institute (CSRI) brings university faculty and students to
Sandia National Laboratories for focused collaborative research on computer science, com-
putational science and mathematics problems that are critical to the mission of the laborato-
ries, the Department of Energy, and the United States. CSRI provides a mechanism by which
university researchers learn about and impact national- and global-scale problems while si-
multaneously bringing new ideas from the academic research community to bear on these
important problems.

A key component of CSRI programs over the last decade has been an active and produc-
tive summer program were students from around the country conduct internships at CSRI.
Each student is paired with a Sandia staff member who serves as technical advisor and men-
tor. The goals of the summer program are to expose the students to research in mathematical
and computer sciences at Sandia and to conduct a meaningful and impactful summer research
project with their Sandia mentor. Every effort is made to align summer projects with the stu-
dent’s research objectives and all work is coordinated with the ongoing research activities
of the Sandia mentor in alignment with Sandia technical thrusts and the needs of the NNSA
Advanced Scientific Computing (ASC) program that has funded CSRI from its onset.

Starting in 2006, CSRI has encouraged all summer participants and their mentors to
contribute a technical article to the CSRI Summer Proceedings of which this document is
the second installment. In many cases, the CSRI proceedings is the first opportunity that
students have to write a research article. Not only do these proceedings serve to document the
research conducted at CSRI but, as part of the research training goals of CSRI, it is the intent
that these articles serve as precursors-to or first-drafts-of articles that could be submitted to
peer-reviewed journals. As such, each article has been reviewed by a Sandia staff member
knowledgeable in that technical area with feedback provided to the authors. Several articles
have or are in the process of being submitted to peer-reviewed conferences or journals and
we anticipate that additional submissions will be forthcoming.

For the 2007 CSRI Proceedings, research articles have been organized into the following
broad technical focus areas – computational mathematics and algorithms, discrete mathe-
matics and informatics, transformation, architecture and systems software, and applications
– which are well aligned with Sandia strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding technical
accomplishments of CSRI in 2007 as documented by the high quality articles in this proceed-
ings. The success of CSRI hinged on the hard work of 27 enthusiastic student collaborators
and their dedicated Sandia technical staff mentors. It is truly impressive that the research
described herein occurred primarily over a three month period of intensive collaboration.

CSRI benefited from the administrative help of Deanna Ceballos, Bernadette Watts, Mel
Loran, Dee Cadena, and Vonda Coleman. The success of CSRI is, in large part, due to
their dedication and care and it is much appreciated. We would also like to thank those that
reviewed articles for this proceedings – their feedback is an important part of the research
training process and has significantly improved the quality of the papers herein. We would
like to thank David Womble for his advice, guidance and overall CSRI management. Finally,
we want to acknowledge the ASC program for their continued support of the CSRI and its
activities which have benefited both Sandia and the greater research community.

Michael L. Parks
S. Scott Collis

December 6, 2007

iv CSRI Summer Proceedings 2007

M.L. Parks and S.S. Collis v

Table of Contents

Preface
M.L. Parks and S.S. Collis . iii

Computational Mathematics and Algorithms
M.L. Parks and S.S. Collis . 1

Compatible Gauge Approaches for H(div) Equations
P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu 3

Generalized Strength of Connection in Algebraic Multigrid
J. Schroder, R.S. Tuminaro, and L. Olson . 14

Preliminary Infrastructures for Model Order Reduction in XyceTM

R. Nong and H. Thornquist . 26
Hessian-Based Model Reduction for Large-Scale Source Inversion

C.E. Lieberman and B.G. van Bloemen Waanders 37
Implementing and Profiling of a Variable Block Matrix-Matrix Multiply in ML

I. Karlin and J. Hu . 49
Model Reduction by Component Mode Synthesis

R.M. Davis and R.B. Lehoucq . 57
Constrained Eigenvalue Problems

C.G. Baker and R.B. Lehoucq . 68
Discrete Mathematics and Informatics

M.L. Parks and S.S. Collis . 73
Partitioning for Parallel Sparse Matrix-Vector Multiplication

M.M. Wolf and E.G. Boman . 75
Extracting Clusters from Large Datasets with Multiple Similarity Measures

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 87
Python Optimization Modeling Objects (Pyomo)

N.L. Benavides, R.D. Carr, and W.E. Hart 104
Transformation

M.L. Parks and S.S. Collis . 113
Error Estimation for Immersed Interface Solutions

B.A. Vanderlei and M.M. Hopkins . 115
Verification of Low-Mach Number Combustion Codes

L. Shunn and P.M. Knupp . 126
Validation of Analytical Models for Fault Tolerance

M.R. Varela and R.A. Oldfield . 137
An Optimization Under Uncertainty Algorithm with an Example from Design

F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 142
Calibration and Uncertainty Analysis for Expensive Computer Simulations

J.M. McFarland, L.P. Swiler, and V.J. Romero 154
Mesh Optimization for Curved Domains with Target-Matrix Paradigm

H. Erten and P.M. Knupp . 166
A Method of Manufactured Solutions for PDEs with Stochastic Inputs

P. Constantine and P.M. Knupp . 176
Architecture and Systems Software

M.L. Parks and S.S. Collis . 187
Lightweight Threading for Architectural Design Research

K.B. Wheeler and R.C. Murphy . 189
Reconfigurable Functional Unit Design for Complex Scientific Dataflow Graphs

K. Rupnow and K.D. Underwood . 197

vi CSRI Summer Proceedings 2007

Architectural Extensions for Executing Floating Point Instruction Aggregates
P. La Fratta, A. Rodrigues, and K.D. Underwood 210

Accelerating Reed-Solomon Coding in RAID Systems with GPUs
M.L. Curry, L.H. Ward, A. Skjellum, and R.B. Brightwell 222

Applications
M.L. Parks and S.S. Collis . 229

Energy Based Magnetic Force Computation using Automatic Differentiation
A.R. Schiemenz and A.C. Robinson . 231

Effect of Asphericity on the Diffusion of Solutes in a Lennard-Jones Solvent
B.O. Oguntade and S.J. Plimpton . 242

A Study of Solvers for Fluid Density Functional Theories
S.M. Knepper and M.A. Heroux . 248

Stokes Flow with Capillary Forces using Sundance
J.W. Fettig and S.S. Collis . 256

Continuation for Atomic and Molecular Fluids using LOCA
K.I. Dickson, A.G. Salinger, B.M. Pettitt, M. Marucho, C.T. Kelley 265

Evaluation of Magnetic Vector Potential in 2D and 3D Models
K. Chowdhary and A.C. Robinson . 274

M.L. Parks and S.S. Collis 1

Computational Mathematics and Algorithms

Scientific computation has reached the point where it is on a par with laboratory ex-
periment and mathematical theory as a tool for research in science and engineering and
simulation-based engineering science has been declared indispensable to the nation’s con-
tinued leadership in science and engineering. Indeed, a erudite quotation regarding algorithm
development states “I’d rather use today’s algorithms on yesterday’s computers than the other
way around.” The fundamental difficulties in modeling faced today are not the kind that can
be solved merely by building bigger and faster computers, but also require the development
of new computational mathematics.

To that end, the articles in this section focus on fundamental algorithms with broad appli-
cation. Bochev et al. consider an algebraic reformulation of the discrete second-order elliptic
equations along with a new algebraic multigrid technique for the fast solution of the reformu-
lated problem. Schroder et al. present a new strength of connection criteria for automatic con-
struction of a grid hierarchy in algebraic multigrid. In particular, their criteria is applicable for
situations where classical strength measures are ineffective. Nong and Thornquist investigate
model-order-reduction techniques in the context of large scale circuit simulation in Xyce.
Lieberman and van Bloemen Waanders utilize Hessian-based model reduction to achieve
real-time solution of the source inversion problem arising when identifying a contamination
source given only sparse sensor information. Karlin and Hu discuss the implementation and
profiling of a variable block-matrix multiply within the ML package of algebraic multigrid
preconditioners within Trilinos. Davis and Lehoucq explain the Craig-Bampton method for
component mode synthesis. Finally, Baker and Lehoucq propose an improved algorithm for
the numerical solution of symmetric eigenvalue problems with constraints.

M.L. Parks
S.S. Collis

December 6, 2007

2 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2007 3

COMPATIBLE GAUGE APPROACHES FOR H(div) EQUATIONS

PAVEL B. BOCHEV∗, CHRISTOPHER M. SIEFERT∗, RAYMOND S. TUMINARO∗, JINCHAO XU†, AND

YUNRONG ZHU†

Abstract. We are concerned with the compatible gauge reformulation for H(div) equations and the design of
fast solvers of the resulting linear algebraic systems as in [5]. We propose an algebraic reformulation of the discrete
H(div) equations along with an algebraic multigrid (AMG) technique for the reformulated problem. The reformu-
lation uses discrete Hodge decompositions on co-chains to replace the discrete H(div) equations by an equivalent
2 × 2 block linear system whose diagonal blocks are discrete Hodge Laplace operators acting on 2-cochains and 1-
cochains respectively. We illustrate the new technique, using the lowest order Raviart-Thomas elements on structured
tetrahedral mesh in three dimension and present computational results.

1. Introduction. In this paper, we consider general second order elliptic operators over
the Lipschitz polyhedral domainΩ in 3D. Specifically, letΩ be a bounded, simply connected,
and contractible domain in R3 with Lipschitz boundary ∂Ω. We are looking at the compatible
discretization of the following model equation:

−∇(λ∇ · u) + 1
µ
u = f in Ω,

1
µ
u · n = 0 on Γ,

λ∇ · u = 0 on Γ∗,
(1.1)

where ∂Ω = Γ ∪ Γ∗ and Γ ∩ Γ∗ = ∅. Here, we assume that λ and µ are positive throughout the
domain, but may possibly vary widely.

The variational formulation of problem (1.1) leads naturally to the Hilbert space H(div)
given by

H(div) :=
{
u ∈

(
L2(Ω)

)3
| ∇ · u ∈ L2(Ω)

}
.

This equation is ubiquitous in problems arising in fluid and solid mechanics [6, 10]. It occurs,
in particular, in the solution of second order elliptic partial differential equations (PDE) by
first order least-squares methods or by mixed methods with augmented Lagrangians, see [1,
11, 18, 19] and the references cited therein. The importance of H(div)-related problems has
prompted vigorous research into efficient multilevel schemes, see [1, 11, 12, 18, 19].

The method to be developed in the current paper follows closely the idea of the recent
work of Bochev, Hu, Siefert and Tuminaro [5] for Maxwell’s equations. Specifically, we
propose an algebraic reformulation of the discrete H(div) equations along with a new AMG
technique for this reformulated problem. The reformulation process takes advantage of a
discrete Hodge decomposition on co-chains to replace the discrete H(div) equations by an
equivalent 2 × 2 block linear system whose diagonal blocks are discrete Hodge Laplace op-
erators acting on 2-cochains and 1-cochains, respectively. The new AMG algorithm in this
paper makes use of the Hiptmair smoother [11] on the fine mesh, uses the canonical interpo-
lations Πdiv

h and Πcurl
h on H(div) and H(curl) to construct the grid-transfer operators, and then

uses the standard AMG methods for Laplace-type problems on the coarse meshes.
The rest of the paper is organized as follows. Section 2 reviews basic facts about the

discretization framework used in the paper. In Section 3, we apply this framework to obtain
a compatible discretization for the H(div) equations and its equivalent reformulation. AMG
solvers for the reformulated system are developed in Section 4. In Section 5 we present

∗Sandia National Laboratories, Computational Math & Algorithms, {pbboche, csiefer, rstumin}@sandia.gov
†Penn. State University for Department of Mathematics, {xu, zhu y}@math.psu.edu

4 Compatible Gauge Approaches for H(div) Equations

computational results in three dimension that illustrate the new technique in the context of
smoothed aggregation AMG. In all experiments we use finite element discretizations based
on the lowest order Raviart-Thomas element and lowest order Nédélec element on structured
tetrahedral elements.

2. Compatible discretization framework. In this section, we give a short introduction
of a general framework for compatible discretizations developed in [3]. This framework is
based on algebraic topology and includes certain finite element [4, 17], finite volume [15], and
finite difference [16] schemes as particular cases. As a result, the AMG algorithm developed
in this paper is readily applicable to discrete problems generated by any of these schemes.
The presentation here is almost the same as [5, Section3]. We include this section just for the
sake of completeness.

2.1. Computational grid. We consider computational grids Ωh consisting of 0-cells
(nodes), 1-cells (edges), 2-cells (faces), and 3-cells (volumes). Formal linear combinations
of k-cells are called k-chains [8]. The sets of k-chains forming Ωh are denoted by Ck. We will
assume that Ωh is such that the collection {C0,C1,C2,C3} is a complex, i.e., for any c ∈ Ck,
∂kc ∈ Ck−1, where ∂k : Ck 7→ Ck−1 is the boundary operator on k-chains [7]. Together with
the identity ∂k∂k+1 = 0 this gives rise to the exact sequence

0←− C0
∂1
←− C1

∂2
←− C2

∂3
←− C3 ←− 0 . (2.1)

The dual of Ck is denoted by Ck and its members are called k-cochains [8]. While Ck and
Ck are isomorphic, they have different meanings in our discretization framework. The sets
Ck represent the physical objects that form the grid, while Ck are collections of real numbers
associated with the grid objects. For example, c1 ∈ C1 is a formal sum of (oriented) grid
edges, while its isomorphic image c1 ∈ C1 is a set of real numbers1 assigned to the edges of
c1.

Therefore, the elements of C0 provide values associated with the 0-cells (grid nodes);
the elements of C1 are values associated with the 1-cells (grid edges); C2 contains values
assigned to the 2-cells (grid faces) of the grid, and C3 are the values assigned to the 3-cells
(grid volumes). We will use C0 and C3 to approximate scalar functions and C1 and C2 - to
approximate vector functions.

The symbols Ck
Γ

will denote the subspaces of Ck constrained by zero on the Dirichlet
boundary Γ for k = 0, 1, 2. Such spaces are needed to approximate scalar and vector functions
subject to appropriate boundary conditions2.

2.2. Natural operators. Let 〈·, ·〉 denote the duality pairing of Ck and Ck. The adjoint of
∂k, defined by 〈a, ∂kc〉 = 〈δka, c〉, induces an operator δk : Ck

Γ
7→ Ck+1

Γ
called the coboundary.

This operator satisfies δk+1δk = 0 and gives rise to the exact sequence

R −→ C0
Γ

δ0
−→ C1

Γ

δ1
−→ C2

Γ

δ2
−→ C3 −→ 0 . (2.2)

It is not hard to see that the matrix representation Dk of δk is the signed incidence matrix
between Ck and Ck+1. Following [14] we call D0, D1, and D2 natural approximations of the
gradient, curl and divergence operators. Note that from δk+1δk = 0 it follows that

Dk+1Dk = 0; k = 0, 1, 2 , (2.3)

1Clearly, Ck are isomorphic to Rk̃ , where k̃ = dim Ck . For simplicity, the isomorphic image of the cochain
ck ∈ Ck in Rk̃ will be denoted by the same symbol.

2For example, C0
Γ

approximates scalar functions such that φ = 0 on Γ; C1
Γ

can be used to approximate vector
fields E such that n × E = 0 on Γ. The space C2

Γ
is appropriate for vector fields B that have a vanishing normal

component on Γ.

P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu 5

and so our natural operators mimic the well-known vector calculus identities∇×∇ = 0, and∇·
∇× = 0. In [13], it is pointed out that natural operations are not enough to provide compatible
discretizations of the basic second order operators because their ranges and domains do not
match. For example, we cannot approximate ∇ × ∇× by D1D1 because D1 is in general a
rectangular matrix. The number of its columns and rows equals the number of 1-cells and
2-cells in the grid, which are not the same.

2.3. Metric structures and derived operators. Let Mk : Ck
Γ
7→ Ck

Γ
; k = 0, 1, 2, 3

denote symmetric positive definite matrices. The matrixMk endows Ck
Γ

with an inner product
structure,

(ak, bk)Ck = (ak)TMk(bk) . (2.4)

The matricesM0 andM3 approximate weighted L2 inner products of scalar functions:

M0 −→

∫
Ω

γpp̂ dΩ ; M3 −→

∫
Ω

λφφ̂ dΩ ,

whileM1 andM2 approximate the weighted L2 inner products of vector functions

M1 −→

∫
Ω

σEÊ dΩ ; M2 −→

∫
Ω

µ−1BB̂ dΩ .

We will also use the notation M0(γ), M1(σ), M2(µ−1) and M3(λ) to show the dependency of
the coefficients of these mass matrices explicitly.

We define the derived operator D∗k : Ck+1
Γ
7→ Ck

Γ
as the adjoint of Dk with respect to the

inner product (2.4):

(D∗kak+1, bk)Ck = (ak+1,Dkbk)Ck+1 . (2.5)

From (2.5) it is easy to see that for k = 0, 1, 2

D∗k = M
−1
k D

T
kMk+1 . (2.6)

The matrices D∗2, D∗1 and D∗0 provide a second set of discrete differential operators. Specifi-
cally, they are approximations of scaled gradient, curl and divergence operators

D∗2 → −µ∇λ ; D∗1 → σ−1∇ × µ−1 ; D∗0 → −γ−1∇ · σ ,

augmented with the boundary conditions

λφ = 0 ; n × µ−1B = 0 ; and n · σE = 0 on Γ∗ ,

respectively. Using (2.6) and (2.3)

D∗kD
∗
k+1 = M

−1
k D

T
kMk+1M

−1
k+1D

T
k+1Mk+2 = M

−1
k D

T
kD

T
k+1Mk+2 = 0 ,

and so, the basic vector calculus identities hold for the derived operators as well. The com-
muting diagram, and the relationships among the operators defined above can be summarized
in Figure 2.1. Here, the operators Πgrad

h , Πcurl
h , Πdiv

h , and Π0
h are the canonical interpolations

on H1(Ω), H(curl), H(div), and L2(Ω) to the corresponding finite element spaces Vh(grad),
Vh(curl), Vh(div), and Vh(0) respectively. The lower half of the commuting diagram above
presents the relationships among the operators. For example, from this diagram we can easily
find out that

D∗2 = M
−1
2 D

T
2M3.

6 Compatible Gauge Approaches for H(div) Equations

R
I

−−−−−−→ H1(Ω)
∇

−−−−−−→ H(curl)
∇×

−−−−−−→ H(div)
∇·

−−−−−−→ L2(Ω) −−−−−−→ 0yΠgrad
h

yΠcurl
h

yΠdiv
h

yΠ0
h

R
I

−−−−−−→ Vh(grad)
D0

−−−−−−→
DT

0

Vh(curl)
D1

−−−−−−→
DT

1

Vh(div)
D2

−−−−−−→
DT

2

Vh(0) −−−−−−→ 0yM0(γ)
yM1(σ)

yM2(µ−1)
yM3(λ)

R
I

←−−−−−− Vh(grad)
D∗0

←−−−−−− Vh(curl)
D∗1

←−−−−−− Vh(div)
D∗2

←−−−−−− Vh(0) ←−−−−−− 0

F. 2.1. De Rahm Complex and the lowest order finite element spaces

Because the range of Dk is contained in the domain of D∗k and vice versa we can use
the natural and the derived operators to define discrete versions of the basic second order
differential operators, including a discrete Hodge Laplace operator. Specifically, for k =
0, 1, 2 we have the second order operators

D∗kDk = M
−1
k D

T
kMk+1Dk : Ck

Γ 7→ Ck
Γ (2.7)

DkD
∗
k = DkM

−1
k D

T
kMk+1 : Ck+1

Γ 7→ Ck+1
Γ (2.8)

and the discrete Hodge Laplacian

Lk : Ck
Γ 7→ Ck

Γ ; Lk = D
∗
kDk + Dk−1D

∗
k−1 ; k = 0, 1, 2, 3 (2.9)

with the understanding that D3 = 0 and D∗
−1 = 0.

The discrete operators in (2.7)-(2.9) approximate basic second order elliptic differential
operators. In §3.1 we will use these operators to motivate and explain our reformulation
strategy.

Similar to [5], we also introduce a second set of inner products defined by the matrices
M̃k, (k = 0, 1, 2, 3) that uses a unit weight, i.e.,

M̃k →

∫
Ω

ukvkdΩ, uk, vk ∈ Ck
Γ.

These inner products can be used to define a second set of derived operators D̃∗k : Ck+1
Γ
7→ D̃∗k

given

D̃∗k = M
−1
k D

T
k M̃k+1, k = 0, 1, 2

respectively, and such that D̃∗kD̃
∗
k+1 = 0. These operators give rise to the discrete Hodge

Laplace operators

L̃k : Ck
Γ 7→ Ck

Γ ; L̃k = D̃
∗
kDk ;

P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu 7

that are different versions of Lk respectively.
The following general result from [3] provides the results needed for the reformulation

of the discrete H(div) equation.
Theorem 2.1 The size of the kernel of the analytic and discrete Hodge Laplacians is the
same.

Theorem 2.1 reveals that the null-space of the discrete Hodge Laplacian and, by ex-
tension the structure of the discrete Hodge decomposition of discrete functions in Ck

Γ
, are

topological invariants that are independent of the particular choice of metric, i.e., the matri-
cesMk. As a result, the assertion of this theorem is valid for both L0, L1, L2, and L̃0, L̃1, L̃2.
The properties of these operators, relevant to the reformulation process, are summarized in
the following corollary, which is a generalization of [5, Corollary 3.2].
Corollary 2.2 Assume that Ω is contractible. Then, every uk ∈ Ck

Γ
(k = 1, 2) has the discrete

Hodge decomposition

uk = Dk−1 pk−1 + D̃∗kbk+1 (2.10)

where pk−1 ∈ Ck−1
Γ

and bk+1 ∈ Ck+1
Γ

solve the equations

D̃∗k−1Dk−1 pk−1 = D̃∗k−1uk and DkD̃
∗
kbk+1 = Dkuk , (2.11)

respectively.

3. Compatible discretization of H(div) equation. Using the discrete operators defined
in the last section, a compatible discretization of the H(div) equation (1.1) is straightforward.
Specifically, we approximate u by a 2-cochain u2 ∈ C2

Γ
that is associated with the 2-cells (the

faces) of the mesh that are not in Γ. Then the compatible discrete version of the ∇∇· operator
is provided by the second order discrete operator D∗2D2. As a result, the compatible, fully
discrete equation of (1.1) is given by

(DT
2M3D2 +M2)u2 = f 2, (3.1)

with the matrixM3 containing the material parameter λ and the matrixM2 containing µ−1 and
f 2 ∈ C2

Γ
is a discrete version of f in (1.1). An equivalent “weak” form of (3.1) is given by the

variational equation: seek u2 ∈ C2
Γ

such that(
u2, û2

)
C2
+

(
D2u2,D2û2

)
C3
=

(
f 2, û2

)
∀û2 ∈ C2

Γ . (3.2)

3.1. Reformulation. Following [5] for Maxwell’s equations, we intend on forming the
Hodge Laplacian, which here corresponds to adding a ∇ × ∇× term, namely

L2 = D
∗
2D2 + D1D

∗
1. (3.3)

The following main theorem states an analogue of Theorem 4.2 in [5].
Theorem 3.1 Assume that u2 is a solution of (3.1) and let

u2 = D1e1 + D̃∗2b3 (3.4)

denote its discrete Hodge decomposition with respect to the inner product induced by M̃2.
The pair (a2, e1), where a2 = D̃∗2b3, solves the linear system M2 + D

T
2M3D2 + M̃2D1M

−1
1 D

T
1 M̃2 M2D1

DT
1M2 DT

1M2D1


 a2

e1

 =
 M2 f 2

DT
1M2 f 2

 . (3.5)

8 Compatible Gauge Approaches for H(div) Equations

Proof. Denoting a2 = D̃∗2b3, and applying the decomposition (3.4) to the weak form (3.2)
gives (

D1e1 + a2, û2
)
C2
Γ

+
(
D2a2,D2û2

)
C3
=

(
f 2, û2

)
C2
Γ

, ∀û2 ∈ C2
Γ.

In the above equality, we used the fact that D2D1 ≡ 0. We note that the assumed Hodge
decomposition implies that D̃∗1a2 = 0 (since D̃∗1D̃

∗
2 = 0), thus(

D̃∗1a2, D̃∗1û2
)
C1
Γ

≡ 0, ∀û2 ∈ C2
Γ.

As a result, this term can be added to the last equation to obtain:(
D1e1 + a2, û2

)
C2
Γ

+
(
D2a2,D2û2

)
C3
+

(
D̃∗1a2, D̃∗1û2

)
C1
Γ

=
(

f 2, û2
)
C2
Γ

, ∀û2 ∈ C2
Γ.

It is easy to see that the above weak form is equivalent to the following linear system:

M2a2 +
(
DT

2M3D2 + M̃2D1M
−1
1 D

T
1 M̃2

)
+M2D1e1 = M2 f 2

which is the first equation in (3.5).
Applying the decomposition (3.4) to (3.1), and then multiplying by D∗1 on both sides

gives

D∗1a2 + D∗1D1e1 = D∗1 f 2.

Noticing that by definition D∗1 = M
−1
1 D

T
1M2, the second set of equations in the block system

follows by multiplyingM1 on both sides. This completes the proof.
Here, we should notice that the (2,2) block D∗1D1 is singular. A further decomposition

[5, Corollary 3.2] of

e1 = D0e0 + D̃∗1b2 := D0e0 + a1

yields the following block system A11 M2D1

DT
1M2 A22


 a2

a1

 =
 M2 f 2

DT
1M2 f 2

 (3.6)

where A11 = M2 + D
T
2M3D2 + M̃2D1M

−1
1 D

T
1 M̃2 and A22 = D

T
1M2D1 + M̃1D0M

−1
0 D0M̃1. In

the above formulation, we used the fact that D1D0 = 0 and D̃∗0D̃
∗
1 = 0.

Remark 3.2 The reformulation (3.6) seems more complicated than the original equation
(3.1) that we are actually solving. The idea here is try to use the diagonal blocks A11 and A22
as preconditioner of (3.1), which is the main focus of the next section.

It is interesting to notice that during this reformulation procedure, the gauge term in the
A11 and A22 blocks seems to be indispensable. As was pointed out in [5], these terms play an
important role in avoiding the large null-space caused by ∇∇· operator and ∇×∇× operator
respectively. Forming M̃2D1M

−1
1 D

T
1 M̃2 and M̃1D0M

−1
0 D0M̃1 requires the inversion ofM1 and

M0. Even if we can use mass lumping to simplify the computation, it makes the system more
complicated and ruins the sparsity pattern of the original system. The interesting fact is that
according to the numerical tests (see Section 5 for more details), it is not so clear now if these
gauge terms are necessary or not. We need a more rigorous investigation of the roles of these
gauge terms for more complex problems.

P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu 9

4. Multigrid solvers. Now we are in position to combine the reformulation and pre-
conditioning to develop a linear solver for the compatible discretization (3.1) of the H(div)
equation (1.1). Similar to the algorithm in [5], we focus on developing the AMG block pre-
conditioners.

The approach considered in this paper focuses on developing AMG methods for the (1,1)
and (2,2) blocks in (3.6) separately. Note that these diagonal blocks are Laplace-like. Once
constructed, these AMG solvers are combined as a Jacobi-like preconditioner to precondition
(1.1).

We propose an AMG technique for the whole 2 × 2 system which employs a Hiptmair
smoother (see for example [11]) at the finest level, but allows subsequent levels and transfers
of the (1,1) and (2,2) blocks to be handled with the standard AMG method. To do this,
the face element of the (1,1) block and the edge element version of the (2,2) block must be
converted to a more standard nodal form on the coarse mesh. This is accomplished by two
special prolongators that not only transfer solutions from a coarse to a fine solution but also
transfer solutions from a nodal to a face or edge representation, respectively. The net effect
of these special prolongators is that the corresponding Galerkin projection of the (1,1) and
(2,2) block will, in fact, yield a coarse operator resembling a vector nodal Laplacian which is
amenable to any standard AMG method for further coarsening.

4.1. The specialized prolongators. As discussed earlier, in order to use the standard
AMG solvers for the (1,1) and (2,2) block, we must convert the face element (for the (1,1)-
block) and the edge element (for the (2,2)-block) into the standard nodal form. To do this,
we define specialized prolongators P11 and P22 to transfer solutions from a nodal to a face
and edge representation respectively. Instead of introducing the near null-space to define the
prolongators as was done in [5], here we make use of the interpolation Πdiv

h and Πcurl
h (see

Figure 2.1) as in [2] and [12].
There are many ways to obtain aggregates corresponding to nodes, see [5] for more

details. In this paper, for simplicity we use perfect aggregation. By “perfect”, we mean
that the aggregates are formed manually. Note that we only need to form these aggregates
on the finest level. Once the aggregates are formed, Πdiv

h and Πcurl
h must also be computed.

The detailed construction of the special prolongators for the (1,1) and (2,2) block is given in
Algorithm 1. Notice that the net effect of P11 is to interpolate coarse nodal quantities to fine
face-oriented quantities, and the effect of P22 is to interpolate coarse nodal quantities to fine
edge-oriented quantities.

Algorithm 1: [P11, P22]=Coarse Node Prolongators()

{Ai} ←Aggregate manually;1

For each fine node ni and each aggregateA j define2

(Pn f)i, j =

{
1, if ni ∈ A j

0, otherwise .

P11 = Π
div
h Pn f ;3

P22 = Π
curl
h Pn f ;4

The Galerkin coarse discretizations are given by

AH
11 = PT

11A11P11, AH
22 = PT

22A22P22

10 Compatible Gauge Approaches for H(div) Equations

where A11 and A22 are the (1,1) and (2,2) block of (3.6), AH
11 and AH

22 refer to their projections
on a coarse mesh, respectively.

4.2. Relaxation. As before, we consider the following hybrid scheme. Suppose that
the conjugate gradient iteration is actually applied to (3.1) and that (3.6) is only used within
the preconditioner. To do this, it is necessary to convert residuals of (3.1) to right hand
sides of (3.6) within the preconditioner. This is done by applying [I D1]T to the residual.
Approximate solutions to (3.6) are then converted back to a form suitable for (3.1) via D1a1+

a2.
Algorithm 2 illustrates such a smoother proposed by Hiptmair that combines standard

smoothing of the original equations with standard smoothing of the equations projected to
the null-space [11].

Algorithm 2: ũ = FineRelaxation(A,D1, ũ, b)

ũ← StandardRelaxation(A, ũ, b) ;1

c← StandardRelaxation(DT
1 AD1, 0,DT

1 (b − Aũ) ;2

ũ← ũ + D1c ;3

ũ← StandardRelaxation(A, ũ, b) ;4

The key is that the error is smooth after this initial relaxation. Since the error is smooth,
fine grid relaxation may be omitted from the AMG V-cycles in Solve(), as (3.1) and (1.1) are
equivalent.

It is important to realize that this special smoother is only needed on the finest level. A
standard smoother can be used on coarse levels within the AMG procedures for the (1,1) and
(2,2) blocks. Finally, an additive version of the Hiptmair smoother may also be considered
for FineRelaxation().

4.3. AMG algorithm preconditioner. We now give the entire AMG-based precon-
ditioner for the block Jacobi version in Algorithm 3. PreFineRelaxation() is identical to
Algorithm 2 except step one is omitted. This also avoids the residual calculation in step
two as the initial guess to a preconditioner is always zero. PostFineRelaxation() is identi-
cal to Algorithm 2 except step four is omitted to keep the preconditioner symmetric when
StandardRelaxation() employs a symmetric algorithm. Of course, residual calculations can
also be avoided using additive forms of this smoother.

The algorithm essentially involves two AMG solves for nodal vector Laplacians: AH
11

corresponding to the (1,1) block and AH
22 corresponding to the (2,2) block. In addition, some

relaxation must be performed on the original fine mesh system. Specifically, there are three
major components of the preconditioner.

(1) Hiptmair smoother for H(div) (see also Hiptmair [11]).
(2) AMG for PT

11A11P11 within the (1,1)-block.
(3) AMG for PT

22A22P22 within the (2,2)-block.
The detailed algorithm is listed as follows:

5. Numerical results. All the numerical experiments are conducted in a three-dimensional
unit cube domain Ω = {(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ 1} with homogeneous Neumann bound-
ary condition. The domain is meshed by uniform cubes, and each cube is divided into 6
tetrahedra.

The proposed solver was implemented using CG in MATLAB. The first level and the
first grid transfer of Algorithm 3 is also implemented in MATLAB. ML’s smoothed aggre-
gation solver is used for AH

11 and AH
22, through the mlmex MATLAB interface [9]. A single

P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu 11

Algorithm 3: ũ =Block Preconditioner(r)

% Setup Phase

Form AH
11 ← PT

11A11P11 efficiently;
Standard AMG Setup(AH

11);
Form AH

22 ← PT
22A22P22 efficiently;

Standard AMG Setup(AH
22);

—————————————————————————————— ;

% Solve Phase

ũ← PreFineRelaxation(DT
2M3D2 +M2,D1, 0, r);

r̃ ← r − (DT
2M3D2 +M2)ũ;

% Perform V-cycles on AH
11 and AH

22

a← Standard AMG Vcycle(AH
11, 0, P

T
11r̃) ;

p← Standard AMG Vcycle(AH
22, 0, P

T
22D

T
1 r̃) ;

ũ ← ũ + P11a + D1P22 p ;
ũ ← PostFineRelaxation(DT

2M3D2 +M2,D1, ũ, r) ;

T 5.1
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with constant coefficients,

using Algorithm 3. The size of the problem and the number of SGS smoothing steps are varied.

Grid 93 123 153 183 213 243 273

2 SGS Steps gauge 12 12 13 13 13 13 13
No gauge 11 13 13 14 14 14 15

3 SGS Steps gauge 10 11 11 12 12 12 12
No gauge 9 10 11 12 12 13 13

4 SGS Steps gauge 9 10 10 11 11 11 11
No gauge 8 10 10 10 11 11 11

V-cycle of AMG is used for both the (1,1) and (2,2) block, using the efficient variant of Al-
gorithm 2 (smoother). Unless otherwise stated, we use two steps of symmetric Gauss-Seidel
sub-smoothing on both faces and edges. For all experiments the CG tolerance is 1 × 10−10.

5.1. Constant coefficients. As the first experiment, we consider the constant coeffi-
cients case. We assume that λ = µ = 1 in Ω. Table 5.1 reports the number of iterations with
different meshsize. We note that the number of iterations are almost identical whether we
include the gauge terms in the (1,1), and (2,2)-block or not. By this reason, we will omit the
gauge term in the following numerical experiments.

5.2. Variable µ. We experiment with jumps in µ by considering two regions with con-
stant values of µ. Specifically, define

Ω0 =

{
(x, y, z) :

1
3
≤ x, y, z ≤

2
3

}
, Ω1 = Ω \Ω0;

let µ ≡ 1 in Ω1 and choose µ = µ0 to be a constant inside Ω0. λ is fixed to be 1 throughout the
whole domain Ω. Table 5.2 reports the number of iterations on different meshsize. Note that
the number of iterations are quite robust with respect to the variation of the coefficient µ.

12 Compatible Gauge Approaches for H(div) Equations

T 5.2
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with jump coefficients,

using Algorithm 3. µ0 varies inside [1/3, 2/3]3, and 1 elsewhere, and λ ≡ 1.

µ−1
0

Grid 10−8 10−7 10−6 10−5 10−4 103 10−2 10−1 1
93 11 11 11 11 11 11 11 11 11
183 15 15 15 15 16 16 15 15 14
273 16 16 19 18 18 18 19 17 15

T 5.3
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with jump coefficients,

using Algorithm 3. λ0 varies inside [1/3, 2/3]3, and 1 elsewhere, and µ ≡ 1.

λ0
Grid 10−4 10−3 10−2 10−1 1 101 102 103 104

93 17 16 14 12 11 11 11 11 9
183 21 20 18 16 14 14 14 12 12
273 22 21 21 17 15 15 14 13 13

5.3. Variable λ. We now consider the jump on λ. Same as before, we choose λ = λ0 to
be a constant which varies from 10−4 to 104 inside the domain Ω0, and λ = 1 elsewhere. This
time, we fix µ to be 1 in the whole domain Ω. Table 5.3 reports the number of iterations on
different meshsize. Again, the number of iterations remains fairly constant.

6. Conclusions. In this paper, we proposed an AMG based preconditioner for the H(div)
equation. We reformulated the equation by using the compatible gauge approaches, and
formed a 2 × 2 system which is equivalent to the original discrete linear equations. Then we
combined the AMG solvers for the (1,1) and (2,2) blocks of this system in certain way, and
used it as the preconditioner of the original linear system. We also presented some numerical
experiments to show the robustness of this algorithm. These experiments showed that the
algorithm is very robust even with the presence of large jump coefficients.

REFERENCES

[1] D. N. A, R. S. F,  R. W, Preconditioning in H(div) and applications, Mathematics of
Computation, 66 (1997), pp. 957–984.

[2] R. B, Algebraic multigrid by component splitting for edge elements on simplicial triangulations, Tech.
Report SC 99-40, Zuse Institute Berlin, December 1999.

[3] P. B  J. H, Principles of mimetic discretizations of differential operators, in Compatible Spatial
Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, and M. Shashkov, eds., Springer-
Verlag, 2006.

[4] P. B  A. R, Matching algorithms with physics: exact sequences of finite element spaces, in
Preservation of stability under discretization, D. Estep and S. Tavener, eds., Philadelphia, 2001, SIAM,
pp. 145–165.

[5] P. B. B, J. J. H, C. M. S,  R. S. T, An algebraic multigrid approach based on a com-
patible gauge reformulation of Maxwell’s equations, Tech. Report SAND2007-1633J, Sandia National
Laboratory, 2007.

[6] F. B  M. F, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer series in computa-
tional mathematics, Springer-Verlag, 1991.

[7] S. C, Introductory topology, Ronald Press Co., New York, 1961.
[8] A. D, Multidimensional analysis and discrete models, CRC Press, Boca Raton, 1995.
[9] M. G, C. S, J. H, R. T,  M. S, ML 5.0 smoothed aggregation user’s guide, Tech.

Report SAND2006-2649, Sandia National Laboratories, 2006.

P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu 13

[10] V. G  P. A. R, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin,
1986. Theory and algorithms.

[11] R. H, Multigrid method for H(div) in three dimensions, Electron. Trans. Numer. Anal., 6 (1997),
pp. 133–152. Special issue on multilevel methods (Copper Mountain, CO, 1997).

[12] R. H  J. X, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, tech. report,
2006.

[13] J. H M. S, Adjoint operators for the natural discretizations of the divergence, gradient and
curl on logically rectangular grids, Appl. Num. Math., 25 (1997), pp. 413–442.

[14] , Natural discretizations for the divergence, gradient and curl on logically rectangular grids, Comput.
Math. Appl., 33 (1997), pp. 88–104.

[15] R. N, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29 (1992), pp. 32–56.
[16] M. S, Conservative finite difference methods on general grids, CRC Press, Boca Raton, FL, 1996.
[17] J. W, Calculation of eddy currents in terms of H on hexahedra, IEEE Transactions on Magnetics, 21

(1985), pp. 2239–2241.
[18] P. S. V  J. W, Multilevel iterative methods for mixed finite element discretizations of elliptic

problems, Numerische Mathematik, 63 (1992), pp. 503–520.
[19] B. I. W, A. T,  O. B. W, An iterative substructuring method for Raviart–Thomas

vector fields in three dimensions, SIAM Journal on Numerical Analysis, 37 (2000), pp. 1657–1676.

CSRI Summer Proceedings 2007 14

GENERALIZED STRENGTH OF CONNECTION IN ALGEBRAIC MULTIGRID

JACOB SCHRODER‡, RAYMOND S. TUMINARO§, AND LUKE OLSON¶

Abstract. Algebraic multigrid (AMG) solves sparse linear systems without knowledge of any underlying geo-
metric grid. The automatic construction of a multigrid hierarchy requires strength of connection information in order
to coarsen the matrix graph and determine sparsity patterns for each intergrid transfer operator. This paper focuses
on accessing strength of connection information, i.e. determining which degrees of freedom are strongly related to
each other when algebraically smooth error is transferred between grids. Unfortunately, classic strength measures
based on matrix stencils can be ineffective due to discretization errors and matrix inverses can be too global. We
present an ODE framework for interpreting previous measures and propose a new strength of connection criteria.
Some numerical results for the new criteria are also given.

1. Introduction. Algebraic multigrid (AMG) solves sparse linear systems without knowl-
edge of any underlying geometric grid. The automatic construction of a multigrid hierarchy
normally centers on three distinct tasks: coarse grid selection, determination of the sparsity
pattern for each intergrid transfer, and the specification of the actual coefficients within inter-
grid transfer matrices. This paper focuses on the first two tasks which in turn rely on accessing
strength of connection information, i.e. determining which degrees of freedom are strongly
related to each other when algebraically smooth error is transferred between grids. Specifi-
cally, strength of connection information is used to construct a graph, G, whose vertices are
the degrees of freedom present in the operator, A, and where i is connected by an edge to j
only if i is strongly connected to j. The coarse grid is then constructed by applying some
graph algorithm that coarsens G. Strength information is also used to construct the intergrid
transfer operator, where degree of freedom, i, is used to interpolate to degree of freedom, j,
only if i is strong connected to j.

The current state of strength of connection in AMG is primarily based on the seminal
work of the 1980’s that developed the classic strength of connection measure. The classic
strength of connection measure uses the matrix stencil to determine the strength of connection
between two degrees of freedom, i and j. For instance in [4], i is strongly connected to j with
respect to a matrix A only if

−A(i, j) ≥ θ maxl,i{−A(i, l)}, (1.1a)

for some drop tolerance, 0 < θ ≤ 1.0. Similarly, smoothed aggregation [5] sets degree of
freedom i to be strongly connected to degree of freedom j only if

|A(i, j)| ≥ θ
√

A(i, i) A(j, j). (1.1b)

Unfortunately, the classic measure is most applicable to only M or near-M matrices.
A simple and common example of this measure’s limitations can be seen by considering

the use of bi-linear finite elements for

−uxx + −εuyy = f (1.2)

on a uniform mesh. The corresponding matrix stencil at an interior point is

1
3

 −
1+ε

2 1 − 2ε − 1+ε
2

−2 + ε 4 + 4ε −2 + ε
− 1+ε

2 1 − 2ε − 1+ε
2

 . (1.3a)

‡Department of Computer Science, University of Illinois at Urbana-Champaign, jschrod3@uiuc.edu
§Sandia National Laboratories, rstumin@sandia.gov
¶Department of Computer Science, University of Illinois at Urbana-Champaign, lukeo@uiuc.edu

J. Schroder, R.S. Tuminaro, and L. Olson 15

ε = 1.0 and ε = 0.0 yield respectively,

1
3

 −1 −1 −1
−1 8 −1
−1 −1 −1

 and
1
3

 −
1
2 1 − 1

2
−2 4 −2
− 1

2 1 − 1
2

 . (1.3b)

When ε is small, the coupling in the y-direction is weak. This means that a standard
point smoothing algorithm such as Gauss-Seidel will be ineffective at reducing errors which
are smooth in the x-direction but oscillatory in the y-direction. This is not a problem if the
multigrid coarse mesh is obtained by semi-coarsening, which coarsens only in the direc-
tions where the error after relaxation is smooth. Here, this implies coarsening only in the
x-direction. To semi-coarsen, however, the strength of connection measure should determine
that the coupling in the vertical direction is weak compared to the coupling in the horizontal
direction. Unfortunately, the classic strength of connection measure only indicates modestly
stronger coupling in the horizontal direction. Depending on the drop tolerance, the multi-
grid algorithm may or may not make the proper classification. The simple use of matrix
coefficients is not sufficient to reliably reveal connection strength.

Another motivating concept for determining strength of connection has been the matrix
inverse. The inverse can at first seem an attractive target for calculating strength of connection
because the inverse relates the residual to the error,

A−1r = e. (1.4)

This relationship can appear useful for determining strength of connection in multigrid, be-
cause multigrid solves residual equations on coarse grids. However, the inverse does not
necessarily give useful local strength of connection information. The information in the in-
verse is too global and includes information about both low and high energy modes.

For example, consider a standard 1-D finite difference approximation of

−ε(x)uxx = f (1.5)

with 20 points on [0, 1] and h = 1/19. Define a Neumann boundary condition at x = 0.0
and a Dirichlet boundary condition at x = 1.0. Let ε(x) = 0.001 if x ≤ 0.5 and ε(x) = 1.0
otherwise. The 11th row of the matrix contains the stencil,

[−0.001 1.001 −1]
x = 10h 11h 12h . (1.6)

However, the stencil of the matrix inverse for the two nearest neighbors of point 11 is

[10.0 10.0 9.0]
x = 10h 11h 12h . (1.7)

This is incorrect from a strength standpoint. The strong connection for point 11, should be
to the right, in the direction of the large PDE coefficient. Instead, the strength information
is inconclusive, and even hints at a slightly stronger connection in the direction of the small
PDE coefficient. The reason for this can be explained by considering the Green’s function.
Since the finite difference stencil for the Neumann boundary condition sums to 0, the Green’s
function must be constant from point 11 to the Neumann condition on the left. On the other
hand, the finite difference stencil for the Dirichlet boundary condition forces the Green’s
function to be zero at the Dirichlet boundary on the right. The Green’s function corresponding
to the 11th point is shown in Figure 1.1. It essentially corresponds to two linear functions,

16 Generalized Strength of Connection in AMG

F. 1.1. Column 11 of A−1

one to the left of point 11 and the other to the right of point 11, whose slopes are chosen to
satisfy the boundary conditions, but contain no information about ε.

If we continue examining this example, we can find even more problems with the in-
verse. Columns of the inverse corresponding to points to the left and to the right of the
interface also give incorrect strength information. Even simpler examples can yield inverses
with misleading strength information. Standard finite differencing applied to 1-D isotropic
diffusion with both a Neumann and a Dirichlet boundary condition yields an inverse with
misleading strength of connection information near the boundary conditions.

One recent idea that has attracted attention is Compatible Relaxation (CR), which is used
to identify a subset of the original n degrees of freedom which will define a coarse mesh. CR
iteratively carries out a mock-AMG cycle on Ae = 0, where e is an initial random guess.
First, e is smoothed with the multigrid smoother but each point in the tentative set of coarse
points is made to be invariant and held to 0. The basic idea is that this models a perfect coarse
level operator which reduces the error at the coarse points to zero. Second, CR augments
the tentative set of coarse points with a maximal independent set of points that were not
sufficiently reduced in e by the mock-AMG cycle. The maximal independent set is chosen
using the graph of the matrix. This process is repeated for e until convergence is satisfactory.
Multiple initial random guesses are tried and the algorithm stops once a good balance has
been struck between the coarsening ratio and the convergence rate of the CR smoothing step.
While CR does not explicitly make strength of connection decisions, it does make strength
related decisions when choosing a coarse grid. However, choosing a coarse grid is essentially
an easier problem than calculating strength.

Another strength of connection avenue that has been explored is based on local approx-
imations to the matrix inverse [1, 2]. These methods follow the reasoning that strength of
connections within the matrix inverse are the most relevant when determining intergrid trans-
fers. While our examples illustrate that this is incorrect, local approximations to the inverse
can be much better than the actual inverse. This is because the local approximation may
not suffer from being too global. In this paper, the strength of connection measure in [1]
is examined and referred to as the δ-function inverse measure. This method uses relaxation
to calculate approximations to the matrix inverse with a 0 initial guess. An energy-based
post-processing step is then applied to each column of the approximate inverse to determine

J. Schroder, R.S. Tuminaro, and L. Olson 17

strength of connection.
Our central premise is that strength of connection information suitable for a multigrid

algorithm is best determined by examining the evolution of an initial Dirac δ-function during
the standard multigrid relaxation process. Based on a relationship between weighted-Jacobi
relaxation and the time marching of ordinary differential equations (ODEs), an ODE perspec-
tive is presented for understanding the δ-function inverse measure and the evolution of delta
functions during relaxation. The ODE perspective is used to shed new light on limitations
associated with classical strength of connection measures as well as limitations associated
with matrix inverses. In particular, classical strength of connection measures can be viewed
as the initial evolution of a δ-function within an ODE framework while matrix inverses are
more closely tied to steady-state behavior. It is shown that the initial evolution of a δ-function
may be inaccurate due to high energy modes associated with discretization errors while the
steady-state solution can be too global in nature to properly mimic the behavior of relaxation.
A closely related modified measure to the one in [1] is then proposed based on the time evo-
lution of a δ-function until an intermediate time. A key issue in this proposed method is the
determination of an appropriate intermediate time from which to base strength of connection.

In Section 2, an ODE perspective related to CR is presented that mirrors a Jacobi-
relaxation type iteration. The ODE perspective provides an additional view on the limitations
of classic strength measures and leads into the topic of matrix inverses and the δ-function
inverse measure. In Section 3, the δ-function inverse measure is discussed from the ODE
perspective. In Section 4, a new method related to the δ-function inverse measure is proposed
and analyzed from the ODE perspective. Experimental results are also then given along with
a scale invariance proof.

2. ODE Perspective On Strength. An ordinary differential equation (ODE) perspec-
tive is presented. The perspective provides an additional view on the limitations of classical
strength measures and leads into the topic of local approximations to matrix inverses and the
delta-function inverse measure.

Consider the following ODE,

ut = −Au, with u(0) = δi (2.1)

where δi is a Dirac delta function centered at the location of the i-th grid point and A is a
symmetric positive definite matrix that is assumed to be diagonally scaled so that its diagonal
entries are one. The exact solution to this system is

u = e−Atδi. (2.2)

When A corresponds to a Laplacian, this ODE models the diffusion in time of an initial point
distribution, δi. Obviously, the steady state solution is just u = 0.

Numerically, equation (2.1) can be solved by the forward Euler method resulting in an
iteration of the form

u(0) = δi. (2.3a)

u(k+1) = u(k) − ∆t Au(k).

or

u(k) = (I − ∆t A)kδ j. (2.3b)

Strength of connection corresponds to how much a point i influences a point j. In the
context of (2.1), how does the δ-function at point i spread to point j. At t = 0, we have

ut = −Aδi. (2.4)

18 Generalized Strength of Connection in AMG

Aδi is simply the matrix coefficients in the i-th row. That is, the growth of u at j for t = 0
is just given by the size of the coefficient A(i, j). This is in principle identical to standard
strength of connection measures. There is indeed a strong link between the matrix stencil and
the time evolution of δ-functions at t = 0.

As mentioned the steady state solution of equation (2.1) is just 0 and yields no useful
information. Instead, suppose we consider the following ODE:

ut = −Au + δi, with u(0) = 0. (2.5)

When A corresponds to a Laplacian, this ODE models diffusion in time with a constant source
applied at i. This too might provide insight into how i influences a point j via the oper-
ator A. At t = 0, we have ut = δi. After one step of a forward Euler scheme, we have
ut(∆t) = −∆t Aδi + δi. Thus, once again we have the influence of i at the point j governed
primarily by the size of the matrix coefficients. The steady state solution is now given by
A−1δi, i.e. a column of the inverse of A. However as already discussed, the matrix inverse can
be misleading as it is too global.

Now, consider the transient solution of (1.2) with ε = 0 given by,

ut = −uxx + δ(x∗, y∗), (2.6)

where f is taken as a δ-function centered at some spatial location given by (x∗, y∗). The
solution of the associated PDE (2.6) properly indicates that there is no coupling in the y-
direction. The δ-function only spreads in the x-direction as time increases. More precisely,
u(x, y) = 0 for x , x∗ and t > 0. The associated PDE should give accurate strength of
connection information at time t = 0. A problem can occur, however, when the spatial
term is discretized. For example while discretizing the spatial term with Q1 basis functions
on a uniform grid, one can intuitively see that the basis functions still interact in the weak
direction and will hence yield some discretization error in the weak direction where there is
no PDE coupling. This is reflected in the right-most expression of (1.3b) by the top three and
bottom three stencil coefficients. We spare the reader the details, but the overall stencil yields
O(h2) cross derivative truncation error terms, in the case of a sufficiently smooth function
u. Normally, this error contribution is small for smooth functions. However, the δ-functions
are not smooth and so these error terms are significant during the initial time steps. Since
there is no PDE coupling in the y-direction, any error terms involving derivatives taken in that
direction are significant.

Thus in summary, solutions to equations (2.1) and (2.5) can be considered to generate
strength of connection information. The solutions at t = 0 for (2.1) and at t = ∆t for equation
(2.5) are similar to standard AMG strength of connection measures because they reduce to
using the matrix stencil to make strength decisions. We know, however, that the use of the ma-
trix stencil is quite limited due to discretization errors in directions of weak coupling within
the PDE. Time evolution of the δ-function can serve to damp the high frequency discretization
errors and result in more accurate strength of connection information.

On the other hand, the t → ∞ solutions give us either A−1 or just 0. These solutions are
often too global and do not accurately represent the local influence of i on j. Instead, we will
try and consider an intermediate time where local discretization errors in the weak direction
have decayed sufficiently, but where the time is not too large to render the solution global.
This will be discussed in Section 3.

3. Matrix Inverses And The δ-Function Inverse Measure. As discussed, the matrix
inverse is often too global to adequately capture strength of connection information. However,
there has been some success in using approximate matrix inverses as a means of determin-
ing strength of connection in [1] and [2]. The success of these methods hinges on the fact

J. Schroder, R.S. Tuminaro, and L. Olson 19

that the matrix inverse is not actually computed, as this is too expensive. Instead, a local ap-
proximation to the matrix inverse is generated and this local approximation is actually better
for determining strength of connection than the true matrix inverse. The local nature of the
approximation indirectly accounts for the relaxation process used to compute it and ignores
distorting boundary effects.

If, for example, we recall (2.5):

ut = −Au + δi, with u(0) = 0

and solve this system by a forward Euler method. This essentially solves

Au = δi (3.1)

by a Jacobi scheme. This idea was considered in [1] along with the use of other iterative
relaxation schemes.

The approximate column of the inverse was then combined with a particular strength for-
mula involving u and the A-norm. This energy-based post-processing step calculates strength
of connection between i and j by taking the i-th approximate column of the inverse, zi, and
evaluating

||z̄i||A − ||zi||A

||zi||A
, (3.2)

where z̄i is zi zeroed out at entry j. This corresponds to calculating a normalized change in
energy for zi. Since zi is a locally smooth vector, it would make a good interpolation basis
function around i. Hence if one zeroed out an entry, j, in zi, i.e. interpolation from j is not
used, a large change in energy would be expected if j were important to the interpolation.
This indicates a strong connection.

In our experiments with the scheme, we found that it often worked well in practice but
produced less accurate strength of connection measures if the iteration was carried on too
long. The δ-function inverse measure converges to y(t) = A−1δi + e−Atδi. As the iterations
count is increased for this method, t → ∞ and all information about smooth modes in the
exponential is lost. However, for small numbers of iterations, the result should be dominated
by the locally smooth modes present in the matrix exponential.

The δ-function inverse measure has a number of strengths and worked well in a num-
ber of our experiments. It worked as well as a distance-based strength measure on stretched
meshes. It avoids any dependence on random starting guesses. Calculation (3.2) experimen-
tally gave useful information, albeit at the cost of n A-norms.

However, this method is also not without its weaknesses. Iterating k times to generate the
approximate column of the inverse is equivalent to kn matrix-vector products. The method
converges to non-ideal strength information, i.e. A−1. The method does not indicate when
it is appropriate to stop and if one iterates too much, the quality of the strength information
degrades.

4. Proposed Method. In this section, a new method is proposed by integrating the
strengths of CR and the δ-function inverse measure while addressing their weaknesses. We
give a description for the method using the ODE perspective, show scale invariance and fi-
nally give experimental results.

4.1. Algorithm Description. The proposed method solves equation (2.1) with Euler’s
method and δi as the initial guess. The steady state solution is 0, but the method stops at a
“moderate” time, t f . The strength information for i is then in the resulting smoothed vector.

20 Generalized Strength of Connection in AMG

This vector, (I − ∆tD−1A)kδi, where D = diag(A) and we have modified (2.3b) to explicitly
account for scaling, can be examined directly to determine connection strength or it can be
post-processed as in expression (3.2). The only parameters that could be user-defined are
k and t f , i.e. the number of time steps and the final time. Here is a simple algorithm that
describes our method.
Input: A: Matrix

t f: Stop time for evolution of δ-function
k: Time steps for evolution of δ-function
drop-tol: Drop tolerance for weak connections
energy: Boolean control for post-processing

b: Null Space vector that needs to be well approximated on

coarse meshes. b is often taken to be a vector of ones.
Output: S : S (i, j) = i’s strength of connection to j

S has the same sparsity structure as A

for i = 1:numRows
z = (I − t f

k D−1A)kδi

cols = nonzero-pattern(A(i, :))
for j = 1:length(cols)

if(energy)
%Energy-based Post-processing

z̄ = z
z̄(cols(j)) = 0
S (i, cols(j)) = ||z̄||A−||z||A

||z||A
else

%No Post-processing

S (i, cols(j)) = z(cols(j))/b(cols(j))
z(i)/b(i)

end

Apply(S (i, :), drop-tol)

The calculation z(cols(j))/b(cols(j))
z(i)/b(i) serves two purposes. One, this calculation ensures scale

invariance. Two, the comparison of z to a null space vector, b, allows for this method to work
for nonconstant null spaces. This calculation measures how well a locally smooth function
around i approximates the null space vector at neighbor cols(j). This calculation should
accurately determine strength of connection, i.e. how well algebraically smooth error can be
interpolated from i to cols(j).

The choice of both t f and k is not entirely clear. k must at least be chosen so that the
iteration is stable. We have, however, found that large k rarely helps. k = 1 is similar to the
classic strength measure in that only matrix coefficients are used. We do find that k = 2 offers
significant improvement over k = 1 but that k > 2 does not offer much further improvement.
With respect to t f , a value too small will result in a measure close to the classic strength
measure and is hence undesirable. A value too large will result in information that is too
global in scope. Overall, we want a t f just large enough to damp discretization error. Also,
t f and k should result in an Euler’s method whose action is commensurate with the smoother
used in the multigrid cycle. Such a choice that meets these constraints and that worked well
in our experiments, let t f =

1
ρ(D−1A) and k = 2.

4.2. Scale Invariance. As with the δ-function inverse measure, our method is invariant
with respect to an arbitrary symmetric diagonal scaling.

Proof. Let Ã = D̂−1/2AD̂−1/2, for an arbitrary nonsingular diagonal matrix D̂, D =diag(A)

J. Schroder, R.S. Tuminaro, and L. Olson 21

and D̃ = diag(Ã). Note that D̃ = D̂−1D. We first smooth δi an arbitrary number of times with
Ã in order to derive a relationship to smoothing with A.

(I − ωD̃−1Ã)kδi =(I − ωD̃−1Ã) D̂1/2D̂−1/2 (I − ωD̃−1Ã) D̂1/2D̂−1/2 . . . (4.1a)

(I − ωD̃−1Ã) D̂1/2D̂−1/2 δi

=(D̂1/2 − ωD−1D̂1/2A) D̂−1/2 (D̂1/2 − ωD−1D̂1/2A) D̂−1/2 . . .

(D̂1/2 − ωD−1D̂1/2A) D̂−1/2δi (4.1b)

=D̂1/2(I − ωD−1A)(I − ωD−1A) . . . (I − ωD−1A)D̂−1/2δi (4.1c)

=D̂−1/2
(i,i) D̂1/2(I − ωD−1A)kδi, (4.1d)

where D̂−1/2
(i,i) is a scalar equal to the i-th diagonal entry. Let zi = (I − ωD−1A)kδi, z̃i =

D̂−1/2
(i,i) D̂1/2(I − ωD−1A)kδi, and b̃ = D̂1/2b be the null space vector for Ã.

We first consider the case with no post-processing.

S (i, j) =

z̃(j)
b̃(j)
z̃(i)
b̃(i)

=

D̂−1/2
(i,i) D̂1/2

(j, j)z(j)

D̂1/2
(j, j)b(j)

D̂−1/2
(i,i) D̂1/2

(i,i)z(i)

D̂1/2
(i,i)b(i)

=

z(j)
b(j)
z(i)
b(i)

(4.1e)

Now, consider the case of energy-based post-processing. Let ˜̄z = z̃ but with the entry
corresponding to neighbor j zeroed out.

S (i, j) =
||̃z̄i||Ã − ||̃zi||Ã

||̃zi||Ã
=
||̃z̄i||Ã

||̃zi||Ã
− 1 (4.1f)

=
||D̂−1/2

(i,i) D̂1/2z̄i||Ã

||D̂−1/2
(i,i) D̂1/2zi||Ã

− 1 (4.1g)

=
|D̂−1/2

(i,i) |

|D̂−1/2
(i,i) |

z̄T
i D̂1/2D̂−1/2AD̂−1/2D̂1/2z̄i

zT
i D̂1/2D̂−1/2AD̂−1/2D̂1/2zi

− 1 (4.1h)

=
||z̄i||A − ||zi||A

||zi||A
2 (4.1i)

4.3. Experiments. We implemented our algorithm as part of the existing ML smoothed
aggregation framework and implemented the energy minimization algorithm of [3] for pro-
longator generation. In the below tables, “Energy-based Post-processing” and “No Post-
processing” refer to options in the algorithm of Section 4.1 and “Steps” refers to the number
of time steps used. t f =

1
ρ(D−1A) , unless otherwise mentioned.

All of the below strength stencils are for the degree of freedom in the center of a 31× 31
regular mesh. The data is presented as 3 × 3 arrays of values that represent the strength of
connection values between the degree of freedom in question and its geometric neighbors
above, below, to the left, to the right and diagonally offset. The degree of freedom in question
is represented as “***”, as no strength of connection information is needed between a point
and itself.

First, we briefly examine the isotropic case with Q-1 elements on a uniform grid. As
expected, the strength stencils are isotropic. In Tables 4.1 and 4.2, we present the “No Post-
processing” and “Energy-based Post-processing” cases respectively.

22 Generalized Strength of Connection in AMG

T 4.1
Isotropic – Strength of Connection Stencils – No Post-processing

Steps = 1 3
0.0836 0.0836 0.0836 0.0547 0.0583 0.0547

Stencils 0.0836 *** 0.0836 0.0583 *** 0.0583
0.0836 0.0836 0.0836 0.0547 0.0583 0.0547

T 4.2
Isotropic – Strength of Connection Stencils – Energy-based Post-processing

Steps = 1 3
0.0190 0.0381 0.0190 0.0141 0.0183 0.0141

Stencils 0.0381 *** 0.0381 0.0183 *** 0.0183
0.0190 0.0381 0.0190 0.0141 0.0183 0.0141

Next, we again examine results for Q-1 elements on a uniform grid, but with anisotropy
that is rotated by π

4 and vertically aligned anisotropy, corresponding to

−(c2 + εs2)uxx − 2(1 − ε)cs uxy − (εc2 + s2)uyy = f , (4.2)

where ε = 0.001, c = cos(θ), s = sin(θ) and θ is the angle of rotation.
In Table 4.3, we show the matrix stencils, which can be compared with the computed

strength measures. In Tables 4.4–4.7, we present strength stencils for the “No Post- process-
ing” and “Energy-based Post-processing” options for the vertically aligned anisotropy case
and then the rotated anisotropy case. For the vertically aligned case, t f =

2
ρ(D−1A) .

T 4.3
Original Matrix Stencils

Problem Vertical Anisotropy Anisotropy Rot. By π
4

-0.1668 -0.6663 -0.1668 0.0829 -0.1668 -0.4166
Stencils 0.3326 1.3346 0.3326 -0.1668 1.3346 -0.1668

-0.1668 -0.6663 -0.1668 -0.4166 -0.1668 0.0829

T 4.4
Vertical Anisotropy – Strength of Connection Stencils – No Post-processing

Steps = 1 2
0.0838 0.3345 0.0838 0.0278 0.2085 0.0278

Stencils -0.1670 *** -0.1670 -0.0830 *** -0.0830
0.0838 0.3345 0.0838 0.0278 0.2085 0.0278

Steps = 3 4
0.0257 0.1951 0.0257 0.0245 0.1889 0.0245

Stencils -0.0772 *** -0.0772 -0.0743 *** -0.0743
0.0257 0.1951 0.0257 0.0245 0.1889 0.0245

It is important that the range for appropriate drop tolerances is large. Weak connections
are defined to be less than the drop tolerance times the largest strength of connection value
for that degree of freedom. For instance in Table 4.7, the strong connections are along the
diagonal from the lower-left to the upper-right and these connections are a factor of 4 greater

J. Schroder, R.S. Tuminaro, and L. Olson 23

T 4.5
Vertical Anisotropy – Strength of Connection Stencils – Energy-Based Post-processing

Steps = 1 2
-0.0512 -0.1082 -0.0512 -0.0065 0.2157 -0.0065

Stencils -0.1057 *** -0.1057 0.0084 *** 0.0084
-0.0512 -0.1082 -0.0512 -0.0065 0.2157 -0.0065

Steps = 3 4
-0.0037 0.2061 -0.0037 -0.0026 0.2002 -0.0026

Stencils 0.0146 *** 0.0146 0.0166 *** 0.0166
-0.0037 0.2061 -0.0037 -0.0026 0.2002 -0.0026

T 4.6
Anisotropy Rotated by π

4 – Strength of Connection Stencils – No Post-processing

Steps = 1 2
-0.0347 0.0698 0.1742 -0.0226 0.0552 0.1280

Stencils 0.0698 *** 0.0698 0.0552 *** 0.0552
0.1742 0.0698 -0.0347 0.1280 0.0552 -0.0226

Steps = 3 4
-0.0205 0.0520 0.1190 -0.0196 0.0506 0.1151

Stencils 0.0520 *** 0.0520 0.0506 *** 0.0506
0.1190 0.0520 -0.0205 0.1151 0.0506 -0.0196

T 4.7
Anisotropy Rotated by π

4 – Strength of Connection Stencils – Energy-Based Post-processing

Steps = 1 2
-0.0019 0.0287 0.0861 0.0011 0.0181 0.0731

Stencils 0.0287 *** 0.0287 0.0181 *** 0.0181
0.0861 0.0287 -0.0019 0.0731 0.0181 0.0011

Steps = 3 4
0.0012 0.0161 0.0669 0.0012 0.0152 0.0642

Stencils 0.0161 *** 0.0161 0.0152 *** 0.0152
0.0669 0.0161 0.0012 0.0642 0.0152 0.0012

than the next strongest connection. Hence a drop tolerance greater than 0.25 would be ap-
propriate. In Table 4.4, the strong connections are in the vertical direction and are a factor of
7-8 greater than the next strongest connections, which imply a drop tolerance greater than 1

7
is appropriate.

It is not entirely clear how to interpret the negative entries, but they most likely imply a
weak connection. Also, it is important that the separation between weak and strong connec-
tions does not change much after 2 time steps. We therefore suggest using only 2 time steps
with this method.

As a means of comparison, strength of connection information from the δ-function in-
verse measure is given in Tables 4.8 and 4.9. One of the inherent problems of the δ-function
inverse measure appears in Table 4.9, where the strength of connection information begins
to degrade for higher degrees. This also happens in the vertically aligned anisotropy case,
but at higher degrees. It is important that this phenomenon was not observed in our method.
The separation between strong and weak connections in Tables 4.8 and 4.9 and is roughly the

24 Generalized Strength of Connection in AMG

same as in our method.

T 4.8
Vertical Anisotropy – Strength of Connection Stencils – δ-function inverse measure

Steps = 1 2
0.0020 0.0541 0.0020 0.0017 0.0977 0.0017

Stencils 0.0113 *** 0.0113 0.0161 *** 0.0161
0.0020 0.0541 0.0020 0.0017 0.0977 0.0017

Steps = 3 4
0.0011 0.1359 0.0011 0.0006 0.1710 0.0006

Stencils 0.0187 *** 0.0187 0.0205 *** 0.0205
0.0011 0.1359 0.0011 0.0006 0.1710 0.0006

T 4.9
Anisotropy Rotated by π

4 – Strength of Connection Stencils – δ-function inverse measure

Steps = 1 2
0.0011 0.0073 0.0378 0.0012 0.0151 0.0634

Stencils 0.0073 *** 0.0073 0.0151 *** 0.0151
0.0378 0.0073 0.0011 0.0634 0.0151 0.0012

Steps = 3 4
0.0010 0.0230 0.0840 0.0008 0.0308 0.1021

Stencils 0.0230 *** 0.0230 0.0308 *** 0.0308
0.0840 0.0230 0.0010 0.1021 0.0308 0.0008

If appropriate drop tolerance values are chosen, the above strength stencils will yield cor-
rect coarse grids. With correct coarse grids, AMG can be used as an effective preconditioner
as evidenced in Table 4.10, where an AMG method was used in conjunction with the strength
of connection measures computed here.

T 4.10
PCG Convergence Counts

Problem Vertical Ani. Rot. By π
4 Ani. Rot. By π

8 Ani.
31 × 31 12 9 12

Mesh Size 63 × 63 16 10 16
127 × 127 17 14 20

5. Conclusions. The proposed method performs as well as the δ-function inverse mea-
sure if the same number of iterations and energy-based postprocessing are both used. The
proposed method can also be computationally much cheaper than the δ-function inverse mea-
sure, especially if no energy-based post processing is used and the number of time steps is 2.
In this case, the proposed method only calculates the entries of (I−∆t A)2δi for the neighbors
of i in the matrix graph. The entire vector need not be calculated. However in the δ-function
inverse measure, the entire vector must be calculated so that the energy-based post-processing
step can be applied. While the strength information produced by only 2 time steps is infe-
rior to that produced by the δ-function inverse measure using 2 time steps and energy-based
post-processing, it is much more computationally feasible and is an improvement over just
the matrix stencil.

J. Schroder, R.S. Tuminaro, and L. Olson 25

As the iterations of the δ-function inverse measure increase, t f → ∞, and the method
converges to the matrix inverse, which is problematic. On the other hand, as the iterations of
the proposed method increase, ∆t → 0, and the method converges to e−At f δi, which is a useful
combination of locally smooth modes for “moderate” t f .

The proposed method is similar to CR in that we relax an initial error for the homoge-
neous system of equations and our strength decisions are based directly on the action of the
smoother. However, we avoid the use of an undetermined number of random starting vectors
by choosing point-sources as our initial error.

REFERENCES

[1] J. B, M. B, S. ML, T. M,  S. MC, An energy-based AMG coarsen-
ing strategy, Numer. Linear Algebra Appl., 13 (2006), pp. 133–148.

[2] O. B̈, Parallel Multigrid Methods Using Sparse Approximate Inverses, PhD thesis, Dept. of Computer
Science, ETH Zürich, May 2003.

[3] J. M, M. B,  P. V, Energy optimization of algebraic multigrid bases, Computing, 62 (1999),
pp. 205–228.

[4] J. W. R  K. S̈, Algebraic multigrid (AMG), in Multigrid Methods, S. F. McCormick, ed., Frontiers
Appl. Math., SIAM, Philadelphia, 1987, pp. 73–130.

[5] P. V̌, J. M,  M. B, Algebraic multigrid based on smoothed aggregation for second and
fourth order problems, Computing, 56 (1996), pp. 179–196.

CSRI Summer Proceedings 2007 26

PRELIMINARY INFRASTRUCTURES FOR INTEGRATING MODEL ORDER
REDUCTION METHODS INTO XYCETM

RYAN NONG∗ AND HEIDI THORNQUIST†

Abstract. While advances in manufacturing enable the fabrication of integrated circuits containing tens-to-
hundreds of millions of devices, the time-sensitive modeling and simulation necessary to design these circuits poses
a significant computational challenge. Model-order-reduction techniques attempt to alleviate the computational diffi-
culties by generating macromodels that capture the desired input-output behavior of larger dynamical systems. Even
though model order reduction is an active area of research in design automation, the techniques see limited use in
commercial circuit design tools and mostly for interconnect macromodeling. The Xyce circuit simulator is focused
on developing the capability to solve extremely large circuit problems that have tens-to-hundreds of millions of de-
vices, which motivates the research and integration of broadly-applicable model-order-reduction techniques. This
paper lays out the groundwork for the integration of two recent model-order-reduction techniques into Xyce.

1. Introduction. Advances in manufacturing enable the fabrication of integrated cir-
cuits containing tens-to-hundreds of millions of devices. However, the time-sensitive model-
ing and simulation necessary to design these circuits poses a significant computational chal-
lenge. When the integrated circuit has millions of devices, performing a full system sim-
ulation is practically infeasible. The principal reason for this is the time required for the
nonlinear solver to compute the solutions of large linearized systems during the simulation of
these circuits.

Model-order-reduction (MOR) techniques attempt to produce macromodels that capture
the desired characteristics, such as passivity or stability, of larger dynamical systems while
enabling substantial speedups in simulation time. The vast majority of current MOR tech-
niques are projection based, meaning that a macromodel of the large-scale dynamical system
is generated by projecting it onto some low-dimensional subspace. Projection based MOR
methods generate their subspace using either a moment matching based method (Krylov sub-
space method) or SVD based method (balanced realization, proper orthogonal decomposi-
tion). While model-order reduction is an active area of research, the techniques see limited
use in commercial Electrical Design Automation (EDA) tools and are mostly used for inter-
connect macromodeling.

In this paper, we present a preliminary study of the infrastructure required for the integra-
tion of current MOR methods into Xyce, a modern circuit simulation code. We will discuss
how Xyce and other modern circuit simulators formulate the circuit equations and the struc-
ture of the resulting set of differential algebraic equations (DAEs) in Section 2. Given this
knowledge, we then assess the direct applicability of current MOR methods to modern cir-
cuit simulation codes. To make this assessment more manageable we consider two passivity
preserving MOR methods: the Structure-Preserving Reduced-Order Interconnect Macromod-
eling (SPRIM) method by Freund [2], presented in Section 3.1, and the invariant subspace
method by Sorensen [7] and Nong [5], presented in Section 3.2. Implementing these methods
using C++ and Trilinos [3] is discussed in Section 4, where any modifications to either the
circuit simulator or MOR method that would be required for integration are also presented.
Numerical results from the application of both methods to an RLC ladder circuit are given in
Section 5. This preliminary study has provided insight into the interaction of modern circuit
simulators and MOR methods, but has illuminated a host of issues that need to be addressed
by both, which are briefly discussed in Section 6.

In this paper, except when specified otherwise, upper case bold letters (A, B, etc.) will

∗CAAM Department, Rice University, ryannong@caam.rice.edu
†Sandia National Laboratories, hkthorn@sandia.gov

R. Nong and H. Thornquist 27

denote matrices, lower case bold letters (x, y, etc.) will denote vectors, and non-bold or
Greek letters will denote scalars. Script letters (A, E, etc.) will denote special or structured
matrices. Conjugate transpose is denoted by A∗ and transpose by AT .

2. Xyce. Xyce is a massively parallel SPICE-style circuit simulator developed to sup-
port the needs of electrical designers at Sandia National Laboratories. To this end, Xyce
development is focused on improving capability over the current state-of-the-art in several
areas of circuit simulation. One such area is the capability to solve extremely large circuit
problems that have tens-to-hundreds of millions of devices. This certainly motivates an effi-
cient parallel implementation that can take advantage of the powerful computing resources at
Sandia National Laboratories. However, this also motivates the research on performance im-
provements for important numerical kernels, often requiring state-of-the-art algorithms and
novel solution techniques like model-order reduction.

Xyce and many other modern circuit simulators use modified nodal analysis (MNA) to
solve their circuit problems (see for instance Keiter et al. [4]). This formulation is based on
the three types of equations found in circuit theory:

• Kirchhoff’s voltage law (KVL), which specifies that the sum of the branch voltage
drops around a closed loop of a circuit should equal zero. This is expressed as∑B1

j=0 v j = 0, where B1 is the number of branches in a closed loop.
• Kirchhoff’s current law (KCL), which specifies that at any node in a circuit the

sum of the branch currents into/out of the node must equal zero. This is expressed
as

∑N1
j=0 i j = 0, where N1 is the number of branch currents into/out of a circuit node.

• Branch constitutive equations/relationships (BCEs/BCRs), which describe the
physical behavior of the circuit elements. For resistors, capacitors, and inductors the
BCEs/BCRs are, respectively,

i = Gv =
v
R
, i = C

dv
dt
, v = L

di
dt
.

MNA is sometimes referred to as the “modified KCL formulation” because it satisfies one
KCL equation at every node, except the ground node, and adds on at least one equation that is
not a KCL equation. These equations correspond to non-Ohmic devices, like an independent
voltage source or inductor, and the variables added to satisfy these equations are generally
current variables. Once MNA has been performed on a circuit, the result is a state space
model in descriptor form

E dx
dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (2.1)

where E, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, D ∈ Rp×p, x(t) ∈ Rn is the state, u(t) ∈ Rp is the
input, and y(t) ∈ Rp is the output. The order of the system is n and number of inputs (outputs)
is p.

3. Methods. In this section we present the two passivity preserving algorithms for
model-order reduction that are under consideration for integration into Xyce. First we discuss
the SPRIM method which was introduced by Freund [2] in Section 3.1. Then we discuss the
invariant subspace method which was proposed by Sorensen [7] and further studied by Nong
[5] in Section 3.2.

3.1. SPRIM. The SPRIM algorithm was proposed by Freund [2] in 2004 as an im-
provement of the Passive Reduced-Order Interconnect Macromodeling Algorithm (PRIMA)
by Odabasioglu et al. [6]. In addition to preserving passivity for linear time-invariant (LTI)
systems as assured in the PRIMA, the SPRIM algorithm preserves other structures such as

28 Preliminary Infrastructures for Integrating Model Order Reduction Methods into XyceTM

reciprocity or the block structure of the circuit matrices inherent to RLC circuits. Moreover,
with respect to the original models, the reduced models resulting from the SPRIM algorithm
match twice as many moments as those resulting from the PRIMA with the same computa-
tional work. Since it is based on the PRIMA, the SPRIM algorithm also is concerned with
only symmetric positive definite (SPD) systems obtained from a time domain MNA formula-
tion.

We will now briefly present the formulation of the RLC circuit equations that is required
by the SPRIM algorithm; more detail can be found in [2]. First, let E be the adjacency
matrix of the directional graph which describes the connectivity of an RLC circuit. The rows
and columns of E correspond to the graph edges (circuit elements) and graph nodes (circuit
nodes), respectively. By convention, a row of E contains +1 in the column corresponding to
the source node, −1 in the column corresponding to the destination node, and 0 everywhere
else. In addition, the column corresponding to the ground node of the circuit is omitted in
order to remove redundancy.

Denote by vn and ib the node voltages and branch currents of the circuit. The subscript
b can be further categorized into i, g, c and l which represent branches containing current
sources, resistors (conductors), capacitors and inductors, respectively. (Note that in the fol-
lowing derivation, only current sources are considered.) Using Kirchhoff’s laws, we arrive at
the following:

KCL: ET ib = 0
KVL: Evn = vb.

(3.1)

In addition to (3.1), partitioning E, vb and ib as follows,

E =


Ei

Eg

Ec

El

 , vb =


vi

vg

vc

vl

 , ib =


ii
ig
ic
il


and considering the corresponding BCRs

ii = −It(t), ig = Gvg, ic = C
d
dt

vc, vl = L
d
dt

il (3.2)

give the following MNA formulation of the circuit equations:

Gx + C
d
dt

x = BIt(t), (3.3)

where G =
[

ET
g GEg ET

l
−El 0

]
, x =

[
vn

il

]
, C =

[
ET

c CEc 0
0 L

]
, B =

[
ET

i
0

]
and It(t) is the

vector of current source values, G, C SPD matrices and L a symmetric positive semidefinite
matrix whose entries are the conductance, capacitance and inductance values of the elements,
respectively.

Laplace transforming (3.3) and assuming zero initial conditions give

(G + sC)X = BIs(s)
Vi = BT X (3.4)

where X, Is(s) and Vi are the Laplace transforms of the state vector x, the vector of current
source values It(t) and the vector of voltages across the excitation sources, respectively. Then
the transfer function of the circuit is as follows,

G(s) = BT (G + sC)−1B. (3.5)

R. Nong and H. Thornquist 29

The goal is to construct a projection matrix Vn whose columns span a Krylov subspace
of dimension n so that the reduced model of order n can be formed as the projection of the
original model on this Krylov subspace. The SPRIM algorithm is as follows,

Algorithm 1 SPRIM Algorithm
1. Obtain an expansion point s0 and the following block matrices from a MNA formu-

lation

G =

[
G1 GT

2
−G2 0

]
, C =

[
C1 0
0 C2

]
, B =

[
B1
0

]
,

where G1 � 0, C1 � 0 and C2 � 0.
2. Formally setA = −(G + s0C)−1C and R = (G + s0C)−1B.
3. Use a block Krylov subspace method to construct a projection matrix Vn such that

Vn = [v1 v2 . . . vn], where span(Vn) = Kn(A,R).
4. Partition Vn in accordance with the block structure of G as follows

Vn =

[
V1
V2

]
5. Compute G̃1 = VT

1 G1V1, G̃2 = VT
2 G2V1, C̃1 = VT

1 C1V1, C̃2 = VT
2 C2V2, B̃1 =

VT
1 B1 and form

G̃n =

[
G̃1 G̃T

2
−G̃2 0

]
, C̃n =

[
C̃1 0
0 C̃2

]
, B̃n =

[
B̃1
0

]
.

6. The transfer function of the reduced-order model of order n is as follows,

G̃n(s) = B̃T
n (G̃n + sC̃n)−1B̃n. (3.6)

3.2. Invariant Subspace. The invariant subspace algorithm was proposed by Sorensen
[7] in 2005 and further studied by Nong [5] in 2007. In contrast to the PRIMA and SPRIM
methods, this algorithm does not restrict its application to SPD models. The algorithm as-
sumes a state space realization (A,B,C,D) of an LTI circuit resulting in the following linear
dynamical system of equations:

ẋ = Ax + Bu
y = Cx + Du, (3.7)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n and D ∈ Rp×p and x(t) is the state, u(t) the input
and y(t) the output of the system. In addition, n is the order of the system and p the number
of inputs (outputs). The invariant subspace algorithm assures passivity preservation. At the
current stage of the algorithm, only non-descriptor systems are considered.

The following is a brief description of the invariant subspace algorithm [7], which will
lead into a discussion of subspace selection criteria and the two-stage reduction algorithm [5].
Consider an LTI system Σ of order n whose state space realization is (A,B,C,D) as specified
in (3.7) . The transfer function of Σ is

G(s) = C(sI − A)−1B + D. (3.8)

The goal is to construct a pair of projection matrices V and W whose columns span two
k-dimensional subspaces K and L of Rn such that the reduced model Σ̂ of order k can be

30 Preliminary Infrastructures for Integrating Model Order Reduction Methods into XyceTM

formed as the projection of the original Σ on K and the resulting residual is orthogonal to
L. The invariant subspace method by Sorensen [7] transforms the model-order reduction
problem into a highly-structured generalized eigenvalue problem and is as follows,

Algorithm 2 Invariant Subspace Algorithm
1. Formally construct the generalized eigenvalue problem (A,E) using the state space

realization (A,B,C,D) of Σ, where D � 0 and

A =

 A B
−AT −CT

C BT D + DT

 , E =
 I

I
0

 .
2. Compute a kth-order partial real Schur decompositionAQ = EQR.
3. Partition Q in accordance with the block structure ofA as follows,

Q =

 X
Y
Z

 .
4. Compute the singular value decomposition of XT Y as follows,

XT Y = QxS2QT
y .

5. Compute V = XQxS−1, W = YQyS−1 and form

Â =WT AV, B̂ =WT B, Ĉ = CV.

6. The transfer function of the reduced-order model Σ̂ of order k is as follows,

Ĝ(s) = Ĉ(sI − Â)−1B̂ + D. (3.9)

As mentioned above, the reduced-order model Σ̂ is assured to be passive. However,
different choices of V and W result in different reduced-order models some of which are
not good approximations to the original system at all. Note that V and W result from Q,
the orthonormal matrix in the kth-order partial real Schur decomposition. Thus, different
invariant subspaces corresponding to different selections of k out of n finite stable generalized
eigenvalues of (A,E) result in different reduced-order models.

In order to assure the reduced-order models to be good approximations to the originals,
selection criteria for the finite stable generalized eigenvalues of (A,E) therefore must be
developed. Moreover, for the case of large-scale systems where the invariant subspaces
should be computed using iterative methods, not all selection criteria can be satisfied. To
meet these requirements, Nong [5] proposes an algorithm called the two-stage reduction
algorithm which works in large-scale setting and results in reduced-order models as good
approximations to the originals. Given Σ, an LTI system of order n, the algorithm is as
follows,

Algorithm 3 Two-Stage Reduction Algorithm
1. Formally construct the generalized eigenvalue problem (A1,E1) using the state

space realization (A,B,C,D) of Σ, where D � 0 and

A1 =

 A B
−AT −CT

C BT D + DT

 , E1 =

 I
I

0

 .

R. Nong and H. Thornquist 31

2. Compute an mth-order partial real Schur decomposition A1Q1 = E1Q1R1 corre-
sponding to the subset of m finite stable generalized eigenvalues with smallest mod-
ulus of (A1,E1).

3. Partition Q1 in accordance with the block structure of (A1,E1) as follows,

Q1 =

 X1
Y1
Z1

 .
4. Compute the singular value decomposition of XT

1 Y1 as follows,

XT
1 Y1 = Qx1S2

1QT
y1.

5. Compute V1 = X1Qx1S−1
1 , W1 = Y1Qy1S−1

1 and form

Ã =WT
1 AV1, B̃ =WT

1 B, C̃ = CV1

as part of the state space realization (Ã, B̃, C̃,D) of the intermediate reduced-order
model Σ̃ of order m.

6. Formally construct the generalized eigenvalue problem (A2,E2) using the state
space realization (Ã, B̃, C̃,D) of Σ̃, where D � 0 and

A2 =

 Ã B̃
−ÃT −C̃T

C̃ B̃T D + DT

 , E2 =

 I
I

0

 .
7. Compute all the finite stable generalized eigenvalues of (A2,E2) and their residues.
8. Compute an kth-order partial real Schur decomposition A2Q2 = E2Q2R2 corre-

sponding to the subset of k finite stable generalized eigenvalues with largest residue
of (A2,E2).

9. Partition Q2 in accordance with the block structure ofA2 as follows,

Q2 =

 X2
Y2
Z2

 .
10. Compute the singular value decomposition of XT

2 Y2 as follows,

XT
2 Y2 = Qx2S2

2QT
y2.

11. Compute V2 = X2Qx2S−1
2 , W2 = Y2Qy2S−1

2 and form

Â =WT
2 ÃV2, B̂ =WT

2 B̃, Ĉ = C̃V2

as part of the state space realization (Â, B̂, Ĉ,D) of the final reduced-order model Σ̂
of order k.

12. The transfer function of the final reduced-order model Σ̂ of order k is as follows,

Ĝ(s) = Ĉ(sI − Â)−1B̂ + D.

Note that m, the order of the intermediate reduced-order model Σ̃ as introduced in Step 5,
should be chosen such that it is feasible to compute all the finite stable generalized eigenvalues
of (A2,E2) and their residues.

32 Preliminary Infrastructures for Integrating Model Order Reduction Methods into XyceTM

4. Software Implementation. The two model-order-reduction algorithms have been
implemented in C++ using the following Trilinos packages [3]: Epetra, EpetraExt, Amesos,
Teuchos and Anasazi. In this section, for each of the methods, we first present necessary
modifications or additions to the algorithm which extend its application (as in the SPRIM
case) or make it suitable for the implementation (as in the case of the invariant subspace
method). The modifications and additions are then followed by a detailed implementation
description.

4.1. SPRIM.

4.1.1. Modifications. First, notice that the resulting MNA equations derived in the
SPRIM algorithm as presented in Section 3.1 are for circuits excited only by current sources.
Thus, for circuits excited by different types of sources other than only current ones, the block
matrices in (3.3) need be reformulated accordingly.

Second, the transfer functions of a circuit and of its reduced model appear as shown in
(3.5) and (3.6) because the outputs of the circuit are the node voltages observed at the same
locations/ports as its inputs. If this is not the case, then consider the following addition to the
algorithm:

LetD be a matrix of size p×q, where p and q are the numbers of outputs and of states of
the circuit, respectively. Each row of D represents an output and contains +1 in the column
corresponding to the location of the interested output in the state vector x as in (3.3), and 0
everywhere else. As part of Step 1 in Algorithm 1, partition D such that D = [D1 D2] in
accordance with the block structure of G as in (3.3). In Step 5 of the same algorithm, also
compute D̃1 = D1V1, D̃2 = D1V2 and form D̃n = [D̃1 D̃2]. Then the transfer functions of the
circuit of interest and of its reduced model are respectively as follows,

G(s) = D(G + sC)−1B,

G̃n(s) = D̃n(G̃n + sC̃n)−1B̃n.
(4.1)

4.1.2. Implementation. The following is a stepwise C++ implementation of Algorithm
1 using Trilinos packages [3]: In Step 1, Epetra and EpetraExt are used to read in matrices
from files in Matrix Market format [1] and to form the matrices and corresponding block
matrices accordingly. In Step 2, Amesos is used to perform two direct sparse linear solves.
In Step 3, Anasazi is used to construct the Krylov subspace of interest. The computations
and formations of the matrices in Steps 4 and 5 are performed via Epetra and EpetraExt with
an extensive help of Teuchos. Note that Teuchos is used throughout the implementation as
it provides convenient tools such as BLAS/LAPACK wrappers and smart pointers and that
during the implementation, we exercise all the modifications/additions presented above.

4.2. Invariant Subspace.

4.2.1. Modifications. Notice that the non-zero finite generalized eigenvalues of (A,E)
are the reciprocals of the non-zero finite eigenvalues of A−1E given that A is non-singular.
Thus, mathematically, generalized eigenvalues with smallest modulus of (A,E) are the same
as eigenvalues with largest modulus ofA−1E.

With this observation, for Step 2 in Algorithm 3, in our implementation, we compute an
mth-order partial real Schur decomposition A−1

1 E1Q = QR corresponding to the subset of m
non-zero stable eigenvalues with largest modulus of A−1

1 E1 instead. Also, in Step 7 of the
same algorithm, we compute all the non-zero stable eigenvalues of A−1

2 E2 instead and then
consider their reciprocals.

R. Nong and H. Thornquist 33

4.2.2. Implementation. The following is a stepwise C++ implementation of Algorithm
3 using Trilinos packages [3]: In Step 1, Epetra and EpetraExt are used to read in matrices
from files in Matrix Market format [1] and to form the matrices and corresponding block
matrices accordingly. Prior to Step 2, Amesos is used to perform a direct sparse linear solve
as mentioned in Section 4.2.1. In Step 2, Anasazi is used to construct a partial real Schur
decomposition A−1

1 E1Q = QR. The computations and formations of the matrices in Steps
3 − 5 are performed via Epetra and EpetraExt with an extensive help of Teuchos. In Step 6,
Epetra and EpetraExt are used again to form the block matrices. Prior to Step 7, Epetra is used
to perform a matrix inversion as mentioned in Section 4.2.1. In Step 7, a few simple functions
are written to compute the reciprocals of the eigenvalues ofA−1

2 E2 and their residues. Epetra
and EpetraExt with an extensive help of Teuchos are used for the remaining steps to compute
and form the matrices. Also, as mentioned in the SPRIM case, Teuchos is used extensively
throughout the implementation, and the modifications above are applied.

5. Experimental Results. In this section, we present numerical results from running
the two implemented passivity preserving MOR methods on an RLC circuit system. The
frequency responses of the original and reduced models are presented to demonstrate how
good approximations the reduced models are, compared to the original. For the performance
of the MOR methods with respect to the order of the reduced model, see the corresponding
works in Freund [2] and Nong [5].

At the current stage of the project, RLC systems are extracted from Xyce in the form
of data files in Matrix Market format [1]. These files will be the inputs to the C++ code for
the SPRIM method. For the invariant subspace method, since the algorithm only considers
non-descriptor systems for the time-being, these data files need to be further processed so that
the state space realizations of the systems are put in non-descriptor form. In other words, at
the moment, with any given model we are using two different generators to generate both a
descriptor and non-descriptor form of the dynamical system.

V2 V3 V4 V5R1 L1 R2 L2 Rn LnV2n V2n+1V1

Vs
+
−

C1 C2

I2I1

Cn

In

F. 5.1. An RLC ladder circuit.

5.1. Test Model. We consider an RLC ladder circuit excited by a voltage source as
depicted in Figure 5.1. RLC ladder circuits of this type are very typically used to model the
interconnect between the devices on electronic chips. The circuit model we are working with
has 50 blocks of RLC cells, i.e., n = 50. Note from Figure 5.1 that in each block i, the node
voltage V2i between the resistor Ri and inductor Li is a state. Therefore, for this circuit, an
MNA formulation results in an input LTI model of size 151 for the SPRIM algorithm. For
the invariant subspace method, further processing produces a non-descriptor input LTI model
with a state space realization of order 100. The numerical values for the resistor, inductor and
capacitor are Ri = 0.2Ω, Li = 1µH, Ci = 0.5nF, for i = 1, . . . , n.

5.2. Results. Given the RLC ladder circuit in Section 5.1, we are interested in construct-
ing reduced models of order 40 and 20 using the SPRIM and invariant subspace algorithms,
respectively. Note that, even though the descriptor and non-descriptor form of the dynam-
ical system constructed for the two MOR methods (SPRIM and invariant subspace) model
the same circuit, they are of different orders (151 and 100, respectively) due to different
generators. Thus, it is not quite obvious how to select the reduced orders so that the two

34 Preliminary Infrastructures for Integrating Model Order Reduction Methods into XyceTM

corresponding reduced models of the two original systems are comparable. As it appears
reasonable, we choose 40 (with respect to 151) and 20 (with respect to 100) as the orders of
the corresponding reduced systems resulting from model reduction using the two associated
methods.

Since the Krylov subspace in the SPRIM algorithm depends on the expansion point as an
input parameter, we present here two cases for the SPRIM algorithm in which the expansion
points are chosen to be 1000 and 109. Figures 5.2 and 5.3 present the frequency responses
of the original and reduced models resulting from applying the SPRIM method, while Figure
5.4 that from the invariant subspace method.

10−5 100 105 1010 1015
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Frequency

Si
ng

ul
ar

 V
al

ue

original
reduced

10−5 100 105 1010 1015
10−9

10−8

10−7

10−6

10−5

10−4

10−3

Frequency

Si
ng

ul
ar

 V
al

ue

(a) (b)

F. 5.2. Frequency responses of (a) the original model (as described in Section 5.1) of order 151 and its re-
duced model of order 40 and (b) their error system resulting from applying the SPRIM algorithm about an expansion
point at 1000.

10−5 100 105 1010 1015
10−12

10−10

10−8

10−6

10−4

10−2

100

102

Frequency

Si
ng

ul
ar

 V
al

ue

original
reduced

10−5 100 105 1010 1015
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

Frequency

Si
ng

ul
ar

 V
al

ue

(a) (b)

F. 5.3. Frequency responses of (a) the original model (as described in Section 5.1) of order 151 and its re-
duced model of order 40 and (b) their error system resulting from applying the SPRIM algorithm about an expansion
point at 109.

5.3. Observations. For the SPRIM algorithm, the expansion points need to be specified
a priori. The behavior of the reduced models appears local. In other words, given an original
model and an expansion point, the reduced model will capture the features of the original in
the frequency range about the pre-specified expansion point.

For the invariant subspace algorithm via the two-stage reduction method, the reduced
models appear to capture the features of the original in a global sense. This in fact agrees

R. Nong and H. Thornquist 35

10−5 100 105 1010 1015
10−12

10−10

10−8

10−6

10−4

10−2

100

Frequency

Si
ng

ul
ar

 V
al

ue

original
reduced

10−5 100 105 1010 1015
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Frequency

Er
ro

r

(a) (b)

F. 5.4. Frequency responses of (a) the original model (as described in Section 5.1) of order 100 and its
reduced model of order 20 and (b) their error system resulting from applying the invariant subspace algorithm via
the two-stage reduction method.

with what Nong describes in [5]: Spectral zeros with largest residue are the most important in
terms of energy components. Thus, interpolation over these terms results in a reduced model
that captures most of the energy of the original dynamical system.

6. Conclusions & Future Work.

6.1. Conclusions. We present a preliminary study of the infrastructure required for the
integration of current MOR methods into Xyce. To this end, we implement two passivity
preserving MOR methods for LTI systems in C++ using Trilinos [3]. The two methods are the
SPRIM algorithm proposed by Freund [2] and the invariant subspace algorithm proposed by
Sorensen [7] and further studied by Nong [5]. In addition to the implementation, we conclude
through experimental results that, compared to the original model, the SPRIM algorithm
produces reduced models that are good approximations in a local sense while reduced models
resulting from the invariant subspace algorithm via the two-stage reduction method are good
approximations in a global sense.

6.2. Future Work. At the current stage of the project, the implementation remains a
separate entity with respect to Xyce ; inputs for the implemented codes are obtained via data
files that are extracted from Xyce . In addition, for the invariant subspace method that requires
inputs in non-descriptor form, the extracted information needs to be further processed. A few
observations based on this issue are that not all descriptor systems can be modified to put
in non-descriptor form and that when the modifications are possible, they are not universal,
i.e., the modifications are system-dependent. For the SPRIM algorithm, knowledge of ex-
pansion points is too subjective, and for a few cases, the frequency range for assuring a good
approximation does not always enclose the expansion point. Moreover, the circuit structure
that the SPRIM method preserves may not be known a priori in modern circuit simulators,
such as Xyce, since these simulators often use modern software design techniques resulting
in an abstract notion of devices. These limitations suggest the following future directions for
the project:

1. Examine if the invariant subspace method can be generalized for descriptor systems.
If it is possible, then work on providing a generalization.

2. For the SPRIM algorithm, study in detail the role of expansion points in the forma-
tion of reduced models and examine if it is possible to construct a reduced model
about multiple expansion points to better capture the behavior of the original system

36 Preliminary Infrastructures for Integrating Model Order Reduction Methods into XyceTM

in a global sense. In addition, examine the structure preservation techniques and, if
it is possible, study how to abstract these structure preservation techniques.

3. Introduce criteria on what method is suitable for which LTI system and implement
the entire code as a black box embedded inside Xyce.

In addition, so far we have only considered MOR techniques for LTI circuits. Further
steps for the project would also include investigating the MOR techniques for nonlinear and
time variant circuits. The ultimate goal of this work is to enable intelligent integration of
MOR methods into Xyce and expedite the full system simulation of very highly integrated
circuits.

REFERENCES

[1] Matrix market. http://math.nist.gov/MatrixMarket, May 2007.
[2] R. W. F, SPRIM: Structure-preserving reduced-order interconnect macromodeling, Proceedings of the

2004 IEEE/ACM International Conference on Computer-Aided Design, (2004), pp. 80–87.
[3] M. A. H, R. A. B, V. E. H, R. J. H, J. J. H, T. G. K, R. B. L, K. R. L,

R. P. P, E. T. P, A. G. S, H. K. T, R. S. T, J. M. W,
A. W,  K. S. S, An overview of the Trilinos project, ACM Transactions on Mathematical
Software, 31 (2005), pp. 397–423.

[4] E. R. K, S. A. H, R. J. H, T. V. R,  L. J. W, XyceTM parallel electronic sim-
ulator design: Mathematical formulation. Version 2.0, SAND2004-2283, Sandia National Laboratories,
2004.

[5] H. D. N, Passivity preserving model reduction via interpolation of spectral zeros: Selection criteria and
implementation, master’s thesis, Rice University, 2007.

[6] A. O, M. C,  L. T. P, PRIMA: Passive reduced-order interconnect macromodeling
algorithm, IEEE Transactions on Computer-Aided Design of Intergrated Circuits and Systems, 17 (1998),
pp. 645–654.

[7] D. C. S, Passivity preserving model reduction via interpolation of spectral zeros, Systems & Control
Letters, 54 (2005), pp. 347–360.

CSRI Summer Proceedings 2007 37

HESSIAN-BASED MODEL REDUCTION APPROACH TO SOLVING
LARGE-SCALE SOURCE INVERSION PROBLEMS

CHAD E. LIEBERMAN∗ AND BART G. VAN BLOEMEN WAANDERS†

Abstract. The source inversion problem in the application of contamination requires methods for real-time
computation. Determination of the location and magnitude of the contaminant source given sparse sensor data
is formulated as an optimization problem constrained by the system dynamics. The computational complexity of
large-scale finite element discretizations precludes real-time inversion by any method. To effect real-time compu-
tation, we utilize Hessian-based model reduction to produce an optimal reduced-order model sensitive to all initial
conditions. Through an application to the convection-diffusion equation in a two-dimensional domain, we demon-
strate the success of our inversion algorithm. The improvement in computation time over the full-order inversion
is quantified. A high level abstraction toolkit is leveraged to efficiently implement the dynamics and extract linear
operators for components of the Hessian.

1. Introduction. The source of contamination events characterized by sparse sensor
information is obtained by minimizing the misfit between observations and numerical pre-
dictions. While chemical spills, gas leaks, and groundwater contamination are example ap-
plications where source inversion has been applied, chemical, biological, and radiological
terrorist attacks have emerged as significant threats. In principle, source inversions for any
contamination event share similar algorithmic characteristics – i.e. large number of inversion
parameters, use of observations, regularized objective function – but in the case of a terror-
ist attack scenario, not only are the location and magnitude unknown, the inversion needs
to be conducted in real time. This adds a significant challenge to algorithmic development.
Furthermore, the ability of the algorithms to accurately predict the character and location of
the original source is integral to the support of potential evacuation procedures as well as the
mitigation process of the hazardous effects.

Inverse problems of this form have been extensively studied. The literature encompasses
methods in stochastic estimation and deterministic optimization. In either case, research in
this field is dominated by inversion for a relatively small set of parameters. In contrast, we
are interested in inverse problems for which the number of inversion variables is equivalent
to the number of degrees of freedom in the computational domain. In addition, we are inter-
ested in algorithms capable of real time efficiency. In contamination applications the finite
element discretization of the domain often result in millions of degrees of freedom. Inverse
computation at full-order could require days of run time even if implemented in parallel on
today’s fastest supercomputers. With the advent of model reduction, we can reduce the com-
putation time by orders of magnitude and thereby approach real-time analysis. While some
researchers have recognized the need for reduced-order models in inverse problems [6, 9],
their model reduction approaches do not specifically target the inversion. Instead, reduced-
order models are used to decrease the computation time of forward solves required by each
iteration of the solution. Hessian-based model reduction produces an optimal reduced-order
model designed for a deterministic optimization formulation of the source inversion problem.

There are several approaches to solving source inversion problems. Probabilistic meth-
ods build uncertainty estimation directly into the model [3, 12, 14]. A use of the particle
method results in a set of probability distributions for initial conditions [3]. The inversion
leads to the most probable source and automatically provides quantification of the uncertainty
associated with the solution. Snodgrass et. al. combine Bayesian theory and geostatistical
techniques to invert for a time-dependent groundwater pollution source [14]. The Bayesian

∗Massachusetts Institute of Technology, celieber@mit.edu
†Sandia National Laboratories, bartv@sandia.gov

38 Hessian-Based Model Reduction for Large-Scale Source Inversion

approach leads directly to error quantification and provides information about the source of
uncertainty in the prediction. Geostatistical techniques utilize the information about uncer-
tainty to adaptively improve the model, thereby making the algorithm applicable to a general
set of release history problems. An extended Kalman filter was applied to the groundwa-
ter inverse problem in Ref. [12]. The Kalman filter builds up an estimate of the state at
each timestep as more information is collected by sensors. In addition to probabilistic ap-
proaches, deterministic optimization is also well represented in the inverse problem literature.
The formulations usually include a combination of misfit minimizations and regularization.
The research in this sector encompasses experiments in regularization and improvements in
computation of the resulting linear systems. Multigrid preconditioners were investigated in
Ref. [1]. A preconditioner is constructed to force the eigenvalues into clusters, thereby im-
proving the performance of an iterative solver. In Ref. [2], an improvement on the conjugate
gradients iteration by exploitation of the inverse operator’s spectral structure permitted faster
computation. In the present article, we formulate the inverse problem as an optimization con-
strained by system dynamics. To achieve real time efficiency, we incorporate a specialized
model reduction algorithm.

Model reduction and optimization have been united in two ways in the literature. Firstly,
the creation of a reduced-order model results from the minimization of differences in char-
acteristics between the reduced-order and full-order systems. Secondly, a reduced-order
model is used as one element in an optimization algorithm. In the former case, researchers
are concerned with matching the reduced-order and full-order outputs or transfer functions
[4, 7, 18, 11, 15]. While Refs. [4, 7, 18] use a goal-oriented approach to focus the optimization
around minimizing the L2 error between full-order and reduced-order outputs, Ref. [15] con-
structs a reduced-order model based on a relaxation of the H∞ norm. In Ref. [11], the reduced-
order model is focused on minimizing the deviations between the frequency responses of the
full-order and reduced-order systems over the range of interest. Researchers also use reduced-
order models to make tractable some large-scale optimization problems. In these cases, the
reduced-order models are substituted for full-order finite element solutions. For example,
optimal control problems are solved with reduced-order models [5, 13, 16]. Bergmann et. al.
use a modification of proper orthogonal decomposition to develop a reduced-order model to
decrease the run time for each computational fluid dynamics calculation involved in minimiz-
ing the drag on a rotating cylinder. A reduced-order model is created for optimizing the set of
power inputs for the lamp banks in a problem of rapid thermal chemical vapor deposition in
the field of semiconductor manufacturing [16]. The present work combines these applications
of model reduction and optimization by utilizing Hessian-based model reduction to solve the
source inversion problem.

The inverse problem is often posed as an optimization problem; therefore, a reduced-
order model may be effective in this context as well. Reduced-basis methods are utilized in
the inverse identification of thermal parameters of a microelectronics package [9]. A projec-
tion basis spanning a set of full-order finite element solutions is used to project the system
dynamics to reduced space. The computation time is reduced further by implementing a com-
bination of genetic algorithms and hillclimbing techniques to reduce the number of forward
solves required by the optimization. A Krylov subspace model reduction technique is applied
to the inverse problem of electromagnetic scattering [6]. The reduced-order model, based on
the shift invariance property, is developed as part of the Lanczos or Arnoldi algorithms used
to solve for the scatterer electric field. In this article we use an optimal reduced-order model
to minimize the L2 error between the simulated time evolution of the initial condition and the
sparse sensor data.

This class of inverse problems may be addressed by a measure-invert-predict-control

C.E. Lieberman and B.G. van Bloemen Waanders 39

methodology. The first step is to measure the concentration of the contaminant in space and
time. Sensors placed in the domain collect readings of the local concentration of the contam-
inant. Next, the data from these sensors are used to solve an optimization problem whose
solution is the initial contaminant release. Information about the location and magnitude of
the source of the contaminant is integral to the emergency decision-making process. How-
ever, in many cases, knowledge of the source is not sufficient: prediction of the forward-time
propagation of the contaminant is required to conduct appropriate evacuations. If the con-
taminant can be controlled, then the predictions may be used to develop an optimal control
strategy. Control actuators depend on the nature of the contaminant release and the governing
equations. In some cases, contaminants can be neutralized by a chemical agent. One control
strategy would command judicious release of the neutralizing agent in regions of high con-
taminant concentration. If the contaminant is released indoors, the heating, ventilation, and
air-conditioning (HVAC) system may be used to evacuate the chemical. Vents may be used
to force the contaminant to a specified location while returns are used to expel it. The control
problem is not addressed here but it presents a challenge in future work.

This articles addresses the task of obtaining real-time solutions to large-scale source in-
version problems utilizing Hessian-based model reduction. It is structured as follows. In
Section 2 we consider the mathematical formulation of the optimization problem whose so-
lution is the contaminant initial condition. The algorithm is first derived at full-scale. Then,
in Section 3, we briefly discuss Hessian-based model reduction and how it is used to solve
the same problem in reduced space. Section 4 presents implementation details and highlights
our work with a rapid-development finite element toolkit. In Section 5 the full-order and
reduced-order inversion schemes are applied to a generic contaminant release governed by
the convection-diffusion equation. The results and analysis are presented in Section 6. A
qualitative, preliminary parameter study is found in Section 7. Finally, we present conclu-
sions in Section 8.

2. Formulation. The goal of source inversion is to predict initial conditions that, when
simulated forward in time, produce dynamics consistent with the sparse sensor data. There-
fore, we seek to minimize the difference between the actual and predicted concentrations
at the sensor locations. A regularization term is included in the objective function to avoid
illposedness.

Given sensor readings in space-time y∗ and Tikhonov regularization parameter β, the
inversion problem is written as a constrained optimization:

min
x,x0
J(x, x0) =

1
2

(y − y∗)T (y − y∗) +
β

2
xT

0 x0

subject to Ax = Fx0, (2.1)
y = Cx, (2.2)

where Equations (2.1)-(2.2) are the general linear discrete space-time equations resulting
from stacking up the equations of the discrete-time system

x(k + 1) = Ax(k), k = 0, 1, . . . ,T − 1, (2.3)
y(k) = Cx(k), k = 0, 1, . . . ,T, (2.4)
x(0) = x0, (2.5)

for k = 0, 1, . . . ,T . In Equations (2.3)-(2.5), x(k) ∈ IRN is the system state, x0 is the initial
condition, and y(k) ∈ IRQ is the output. The matrices A ∈ IRN×N , B ∈ IRN×P, and C ∈ IRQ×N

40 Hessian-Based Model Reduction for Large-Scale Source Inversion

result from the choices of spatial and temporal discretization. In general, systems of this form
will arise from finite element discretizations of complex spatial domains. For backward Euler
temporal discretization, the matrices in Equations (2.1)-(2.2) contain the following structure:

x =


x(0)
x(1)
...

x(T)

 , y =


y(0)
y(1)
...

y(T)

 , F =



I
0
0
...
...
0


,

A =



I 0 0 · · · 0

−A I 0
. . .

...

0 −A I
. . .

. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 −A I


, C =



C 0 · · · · · · 0

0 C 0
...

... 0 C
. . .

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 C


.

Introducing the adjoint variable z ∈ IRNT , we form the Lagrangian functional
L(x, x0, z) = J(x, x0) − zT (y − CA−1Fx0). Requiring stationarity of the first variations of
L with respect to the state variable x, the input x0, and the co-state z yield the adjoint equa-
tion, the optimality condition, and the constraint equation, respectively. Let g be the first
variation of L with respect to the input x0. Stationarity of L is then given by

g = (H + βI)x0 − (CA−1F)T y∗,

where H = (CA−1F)T (CA−1F) is the Hessian and I is the identity matrix of dimension N.
Therefore, the initial condition that minimizes the objective function is the solution to the
linear problem

(H + βI)x0 = (CA−1F)T y∗. (2.6)

Although this linear system of dimension N is already very large for finite element applica-
tions, the true computational complexity is disguised within the Hessian operator H. In a
large-scale application, the matrices composing H cannot be formed; instead, they must be
defined by their action on a vector. The reduction of order of these operators is the motivation
for implementing Hessian-based model reduction.

3. Hessian-based model reduction. Many model reduction techniques are methods to
find a reduced-space basis V ∈ IRN×n with n � N by which the general discrete-time system
(2.3)–(2.5) is projected to yield

xr(k + 1) = Ar xr(k), k = 0, 1, . . . ,T − 1,
yr(k) = Cr xr(k), k = 0, 1, . . . ,T,
xr(0) = VT x0,

where Ar = VT AV , Cr = CV , and xr = VT x̂ is the reduced state expansion in the basis.

C.E. Lieberman and B.G. van Bloemen Waanders 41

The Hessian-based model reduction strategy seeks a reduced-space basis that minimizes
the difference in outputs between the full-order and reduced-order systems. In Ref. [4], it is
shown that the optimal basis can be obtained by coupling proper orthogonal decomposition
(POD) with the greedy sampling approach originally proposed in Ref. [17]. Bashir et. al.
find that the dominant eigenvector of the error Hessian He = (CA−1F−CrA−1

r Fr)T (CA−1F−
CrA−1

r Fr) is the initial condition that maximizes the L2 error between reduced-order and full-
order outputs. One way to obtain an optimal reduced-order basis would be to initialize empty
reduced-order model matrices, sample the dominant eigenvector of He, construct a reduced-
order model, sample the dominant eigenvector of He, etc. However, instead of repeatedly
sampling the dominant eigenvector of the error Hessian and constructing a new reduced-
order model at every iteration, an arbitrary initial condition may be rewritten in terms of
its components in the space of the reduced basis and those orthogonal to that basis. The
simplifying assumption that the reduced-order output exactly matches the full-order output
for initial conditions in the basis permits a one-shot method for snapshot collection. Once an
eigenvector cutoff criterion is selected, the dominant eigenvectors satisfying that criterion are
each used as seed initial conditions in a forward solve. This process can be parallelized by
running the forward solves over the number of available processors. Snapshots of the state
are taken from the resulting time evolution and POD is performed to obtain a reduced-order
basis. For a more complete discussion of the algorithm, please see Ref. [4].

Once the reduced-order basis is computed, the full-scale system may be projected onto
the reduced space. The fully discrete system (2.1)–(2.2) is rewritten as

Arxr = Fr x0,

yr = Crxr,

where the reduced space-time matrices contain the appropriately projected submatrices. The
reduction to Ar ∈ IRnT×nT , Fr ∈ IRnT×N , and Cr ∈ IRN×nT results in a decrease of many orders
of magnitude in the number of floating point operations (flops) required by a solver iteration.
The only requirement of the Hessian-based model reduction technique is full knowledge of
the governing equations. If the equations are known, calculation of the reduced-order model,
the most computationally intensive aspect of our source inversion methodology, can be pre-
computed offline. The source inversion then boils down to solving the reduced linear problem

(Hr + βI)x0 = (CrA−1
r F)T y∗ (3.1)

where Hr = (CrA−1
r F)T (CrA−1

r F). With the reduction in computation time, Equation (3.1)
may be solved in real-time on a laptop computer in the field.

4. Implementation. Algorithms that require access to the underlying linear algebra in-
frastructure of the target dynamics pose significant implementation challenges, especially for
complex physics, finite element discretizations, and parallelization. In this work we avoid de-
velopment costs associated with the low-level implementation of the forward simulation code
by leveraging high level abstraction methods. The general concept is to isolate implementa-
tion requirements from the end-user to allow exclusive focus on the physics formulation.
Sandia’s Sundance [10] is utilized in this context and provides the capability to write sets of
PDEs in the weak form for a finite element discretization. Differential and algebraic operators
can be specified with test and unknown functions within the computational domain along with
appropriate boundary conditions. The use of this tool merely requires a weak formulation for
the specification of the physics (in addition to some other details which is handled by boiler
plate code) through which a fully functional, 3D, parallel simulator is produced.

42 Hessian-Based Model Reduction for Large-Scale Source Inversion

Although the convection-diffusion physics can be implemented trivially, the implemen-
tation of the reduced Hessian is not quite as straightforward. In our formulation, the re-
sulting reduced Hessian is composed of multiple non-trivial linear operators. First, the A
matrix represents the complete time-stepping sequence of the dynamics, which in this case
is convection-diffusion. Then the mapping of initial conditions to time and space is required
through the matrix F, followed by a matrix C to identify the appropriate sensor locations. To
complete the Hessian construction, a transpose of CA−1F is also needed. Although, the trans-
pose is not a complicated computation to implement, in parallel this can be non-trivial and not
all linear algebra infrastructures have this capability. Finally, the Hessian is dense, large, and
cannot be formed for any reasonable size dataset. These operations have to be implemented
by defining the actions of matrices on vectors through linear operators and corresponding
apply methods. These requirements are not immediately accessible at the end-user level but
the underlying Sundance linear algebra infrastructure is based on matrix free solution proce-
dures. Therefore a special abstract base class was created to build operators related to reduced
order models (ROMs) for linear time-invariant (LTI) systems. An Abstract Factory Pattern
[8] provides the appropriate encapsulation for the LTI components and other ROM related
linear objects. The convection-diffusion main program creates a concrete implementation of
the abstract factory which creates the concrete objects from the interfaces, in this case all the
constituents of H.

A simple 2-D computational domain was used to demonstrate our algorithm and
was defined directly within Sundance using the BasicSimplicialMesher method. The
convection-diffusion equation was defined in the weak form using the Dirichlet boundary
condition on the left boundary. Using linear elements, Sundance constructs a mesh of N
nodes. The timestepping matrix A was then extracted from the linear problem setup by
the getOperator() method. The space-time A−1 operator was implemented as a series
of matrix-vector products utilizing the number of time steps T . After reading in the specified
sensor locations, the matrix C was defined using Thyra1 multivectors. The Hessian operator
is composed of its constituents and passed to M. After completion of the eigenvec-
tor analysis, the seed initial conditions are loaded back into Sundance where a sequence of
forward solves generate the snapshot matrix.

The M2 eig function is utilized to generate the dominant eigenvectors of the Hes-
sian imported from Sundance. Eigenvectors are selected as initial conditions if their asso-
ciated eigenvalues satisfy λ j/λ1 > λ̄ for user specified λ̄. After they are passed back to
Sundance and the snapshot matrix is generated, the svd command generates left singular
vectors for the projection basis. Singular vectors are included in the projection basis if their
normalized singular values satisfy

∑ j
i=1 σi < PODcrit. Thus, the projection basis captures

at least PODcrit × 100% of the energy of the snapshot matrix. After the model matrices are
projected and the reduced-order space-time system is generated, the initial condition is re-
covered by solving Equation (3.1) by Gaussian elimination. Eventually all of the Matlab
functionality will be transferred to Sundance, thereby encapsulating all the functionality in
one program. While the eigenvalue solver interface has been implemented, the projection and
reduced-order inversion is still forthcoming.

Extension of numerical algorithms to large-scale computational domains is of great inter-
est. Without a toolkit to rapidly test these algorithms for varying dynamics, parameters, and
domains, many years are spent developing finite element codes for one-time use. Sundance
provides the functionality to test these algorithms in parallel for different dynamics and com-
plex domains. We next demonstrate our formulation and implementation using convection-

1Thyra is a Trilinos package. For more information, visit http://trilinos.sandia.gov.
2The MathWorks, Inc., Natick, MA 01760

C.E. Lieberman and B.G. van Bloemen Waanders 43

diffusion dynamics but with relatively little effort our formulation can be tested on virtually
any linear dynamics.

5. Application to large scale inverse problem. The convection-diffusion equation is
solved on a simple 2-D rectangular domain to demonstrate the power of the Hessian-based
model reduction technique. Although we would like to extend our implementation to large-
scale 3-D problems in the future, the simple 2-D example here sufficiently demonstrates our
algorithm. The extension to three dimensions only requires greater computation power in
the construction of the reduced-order model. The formulation and the solution are directly
analogous to the 2-D case. The governing equations are

∂u
∂t
+ v · ∇u − κ∇2u = 0, u ∈ Ω, (5.1)

u = 0, u ∈ ΓD, (5.2)
∇u · n = 0, u ∈ ΓN , (5.3)

u = u0, u ∈ Ω × {t = 0}, (5.4)

where u is the concentration of the contaminant with initial condition u0, v = 〈2, 0〉 is the
flow velocity, κ is the diffusivity defined by Pe = ‖v‖/κ with Pe = 100, and n is normal to
the edge of the domain. There is a homogeneous Dirichlet boundary condition on the left of
the domain and Neumann boundary conditions on the remainder of the perimeter as seen in
Figure 5.1.

F. 5.1. 2-D computational domain with Dirichlet boundary condition on the left and Neumann boundary
conditions on the remainder of the perimeter. The velocity field points uniformly in the x-direction throughout the
domain.

In order to test our inversion technique, we fabricate an initial condition and space-time
evolution, thereby extracting sensor data at predetermined nodes of the computational do-
main. The initial condition is chosen to be a Gaussian in the center of the domain as pictured
in Figure 5.2.

Forward-time simulations are achieved by backward Euler temporal discretization and
finite element spatial discretization of Equation (5.1) using linear elements. The state is
calculated at each time step of ∆t = 0.04 for a total of T = 10 time steps. During this period,
the contaminant diffuses and convects to the right side of the domain. The sensor sparsity is
manifested within C, and the sensor locations are overlayed on the domain in Figure 5.3.

For comparison, the source inversion is solved using the full-order system and the
reduced-order model. Results and computational complexity are compared.

44 Hessian-Based Model Reduction for Large-Scale Source Inversion

F. 5.2. Actual initial condition. Gaussian placed in the center of the domain.

F. 5.3. Sensor locations in the domain.

6. Results. In this section the success of our reduced order algorithms is demonstrated.
We find the initial condition that, when subject to regularization and simulated forward in
time, most closely matches the sensor measurements in a least squares sense. In the discrete
form, the optimization problem reduces to a linear problem, the solution of which requires
the application of large space-time operators at each iteration. Hessian-based model reduction
reduces the size of these operators while maintaining the integrity of the input-output relations
corresponding to the initial condition space and the sensor locations. While the full-order
system may be solved in parallel on supercomputers, the model reduction results in a system
solvable in serial on a laptop in the field in real time.

Figure 6.1 presents the full-order inversion side-by-side with the target initial condition.
The height and footprint of the actual initial condition are nearly replicated. The only blemish
is at the maximum concentration of the initial condition. In the full-order inversion, the con-
centration falls off somewhat more dramatically from the location of maximum concentration
than does the smooth Gaussian of the target.

The reduced-order model inversion is pictured in Figure 6.2 with the target initial con-
dition for comparison. Although this inversion was completed with orders of magnitude less
computational complexity, the initial condition is still recovered. There are some undulations

C.E. Lieberman and B.G. van Bloemen Waanders 45

(a) Target initial condition. (b) Full-order inversion.

F. 6.1. Target initial condition (a) and full-order inversion (b).

in the domain at the base of the Gaussian initial condition. These subtle inaccuracies are
likely a result of the model reduction parameter choices as they are not seen in the full-order
inversion above.

(a) Target initial condition. (b) Reduced-order inversion.

F. 6.2. Target initial condition (a) and reduced-order inversion (b).

Table 6.1 contains the parameters used in the implementation. The most important point
to note is the reduction from N = 1071 nodes to n = 128 nodes by the reduced-order model.
Considering the application of the Hessian operator to a vector, if T > N/n, the number
of flops for the ROM inversion is O(n2NT). Compare that complexity with the full-order
inversion requiring O(N3T) flops. The Hessian-based model reduction produces a reduced-
order model used to successfully invert for initial conditions and reduces the number of flops
required by a factor on the order of (N/n)2. This massive decrease in computational expense
may allow these inversion problems to be solved in real-time.

T 6.1
Parameter values

number of sensors Ns 24
number of time steps T 10
number of nodes N 1071
reduced-order model size n 128
regularization parameter β 0.001
eigenvalue cutoff λ̄ 0.1
singular value cutoff PODcrit 0.9999

46 Hessian-Based Model Reduction for Large-Scale Source Inversion

Both inversions recover the initial condition within acceptable error bounds. The dif-
ferences between the full-order and reduced-order inversion arise due to the quality of the
reduced-order model. If the reduced-order model captures the dynamics of the system well
enough, the inversion quality will be adequate. In implementation, however, there is a tradeoff
between a more accurate solution and a faster computation time. The next section considers
further variations in the parameters required for source inversion.

7. Observations in parameter variation. This section discusses the outcome of a small
parameter study which was not meant to be exhaustive but rather qualitative in nature. Upon
the completion of additional functionality in Sundance, a comprehensive sensitivity study
will be conducted. At that time we can make more quantitative statements about the effects
of parameter variations. For now four important parameter variations are discussed, two
(number of sensors and regularization constant) in the context of inversion and two (λ̄ and
PODcrit) in the context of the reduced order modeling.

The number of sensors and their placement is a crucial parameter for importing the data
that drives the inversion. For the high fidelity inversion case, we conclude that an insufficient
number of sensors (Ns < 0.01N) causes significant inversion errors. Also, the placement
of sensors is important to capture information along the convective streamlines, especially
if only a small number of sensors is available. Of course without convection the inversion
is not possible. Algorithmically, we would like to have sensor readings at every node in the
domain. While obviously not practical in a field implementation, this strategy also presents
some difficulty for the model reduction algorithm. There is no guarantee that the dominant
eigenvectors of the Hessian will satisfy the boundary conditions of the forward problem. For
example, in our application in Section 5, an eigenvector with nonzero component on the left
boundary does not satisfy the homogeneous Dirichlet condition. In fact, in the computation,
those elements would be treated as zeroes, which means the effective initial condition does
not satisfy the Hessian eigenvalue problem. This result detracts from the integrity of the
snapshots and the reduced-order model.

The regularization term directly affects the conditioning of the matrix H + βI appearing
in Equation (2.6) and in reduced-form in Equation (3.1). In implementation, a larger β will
produce a faster inverse solve, and likewise, a smaller β will cause convergence problems.
In formulation, the regularization term penalizes the L2 norm of the initial condition in the
objective function, thereby transforming the optimization problem to one that is well-posed.
In theory and practice, β should be decreased as far as the implementation can handle to
achieve the highest quality result. However, small enough β will produce an operator so
ill-conditioned that the problem will be unsolvable.

Each of these parameters affects the inversion process regardless of the presence of
reduced-order modelling. Without enough sensors and appropriate regularization, even a
full-scale inversion will not yield adequate results. There are two parameters that affect the
quality of the reduced-order inversion: λ̄ and PODcrit. The initial conditions used for the
snapshots are determined by λ̄. Those eigenvectors corresponding to eigenvalues λ j of the
Hessian satisfying λ j/λ1 > λ̄ are used as initial conditions in a sequence of forward prob-
lems. The state vectors resulting from those forward problems form the snapshot matrix from
which the basis is created. As λ̄ approaches zero, more and more eigenvector initial condi-
tions are utilized and the snapshot matrix grows. The increase in size results in longer run
times due to the solution of more forward problems as well as the need to obtain the singular
value decomposition of a larger matrix. In general, including more initial conditions from
which to obtain snapshots will better capture the complete dynamics of the system leading
to a more accurate and robust reduced-order model. Our selection of λ̄ = 0.1 reflects the
recommendation in [4].

C.E. Lieberman and B.G. van Bloemen Waanders 47

The second parameter to be adjusted in the reduced-order model is PODcrit, a cutoff
parameter for singular values of the snapshot matrix determining how many basis vectors
are retained for the projection. Let wi represent the ith left singular vector of the snapshot
matrix and σi its corresponding normalized singular value. One interpretation of the singular
value is that it represents the energy associated with the corresponding left singular vector
in reconstructing the dynamics of the snapshot matrix. It is well known that the error in
the L2 norm of the basis projection is characterized by the largest singular value excluded by
PODcrit. This is the motivation for retaining basis vectors w j that satisfy

∑ j
i=1 σi < PODcrit. In

this form, PODcrit represents the percentage of energy to be retained by the basis projection.
Our implementation uses PODcrit = 0.9999 thereby capturing at least 99.99% of the energy
in the first 128 basis vectors. For simple problems, often a very high PODcrit leads to a small
reduced-order model, but still captures a large portion of the energy.

8. Conclusions and future work. We have demonstrated the implementation of
Hessian-based model reduction in a general source inversion problem. The model reduc-
tion procedure yields a set of reduced-order model matrices which significantly decreases the
computational requirements to converge the inversion while still maintaining a high level of
accuracy. Given sensor data, we can invert for initial conditions in real-time. To the best
of our knowledge, this work represents the first instance of a directed sampling approach
to model reduction for inversion. The Hessian-based model reduction specifically targets
the initial conditions leading to maximal error between reduced-order and full-order mod-
els. The adaptation to the greedy algorithm samples these initial conditions at one time to
form a basis, and subsequently generates a reduced-order model that is sensitive to the en-
tire initial condition space. With a set of governing equations, a reduced-order model can be
precomputed offline, leaving only a linear problem to solve for the inversion. In the future,
we would like to explore 3-D problems with millions of nodes in the computational domain
which requires the implementation of additional functionality within Sundance. Addition-
ally, the rapid-development toolkit will aid in a complete parameter study. We will be able
to test various sets of dynamics, types of initial conditions, and different parameter settings
to quantitatively analyze the effects on the inversion algorithm. Finally, we will explore the
control problem associated with a contaminant release. Depending on the application, our
control strategy could be used with available actuators to mitigate the negative effects of a
contamination event.

Acknowledgements. This work was partially supported by the Computer Science Re-
search Institute at Sandia National Laboratories, Albuquerque, New Mexico. We thank our
collaborators Professor Karen Willcox of MIT, Professor Kevin Long of Texas Tech Univer-
sity and Professor Omar Ghattas of the University of Texas at Austin for their contributions
to this work.

REFERENCES

[1] V. A, G. B, A. D, O. G, J. H,  B.  B W, Inversion of
airborne contaminants in a regional model, International Conference on Computational Science: Ad-
vancing Science through Computation, Reading, England, (2006).

[2] V. A, G. B, A. D, J. H, O. G,  B.  B W, Dynamic data-
driven inversion for terascale simulations: real-time identification of airborne contaminants, Proceed-
ings of the 2005 ACM/IEEE Conference on Supercomputing, (2005), p. 43.

[3] A. B, D. D,  A. T, Application of particle methods to reliable identification of
groundwater pollution sources, Water Resources Management, 6 (1992), pp. 15–23.

[4] O. B, K. W, O. G, B.  BW,  J. H, Hessian-based model reduction
for large-scale systems with initial condition inputs, Int. J. Numer. Meth. Engng, (2007).

48 Hessian-Based Model Reduction for Large-Scale Source Inversion

[5] M. B, L. C,  J.-P. B, Optimal rotary control of the cylinder wake using proper
orthogonal decomposition reduced-order model, Physics of Fluids, 17 (2005), pp. 1–20.

[6] N. B  R. R, Electromagnetic inversion using a reduced-order three-dimensional homogeneous
model, Inverse Problems, 20 (2004), pp. S17–S26.

[7] T. B-T, K. W, O. G,  B.  BW, Goal-oriented, model-constrained op-
timization for reduction of large-scale systems, Journal of Computational Physics, 224 (2007), pp. 880–
896.

[8] E. G, R. H, R. J,  J. V, Design Patterns, Addison-Wesley, 2000.
[9] G. L, J. L, A. P, Z. Y,  K. L, Inverse identification of thermal parameters using reduced-

basis method, Computer Methods in Applied Mechanics and Engineering, 194 (2004), pp. 3090–3107.
[10] K. L, Large Scale PDE-Constrained Optimization, Springer Lecture Notes in Computational Science and

Engineering, 2003, ch. Sundance Rapid Prototyping Tool for Parallel PDE Optimization.
[11] R. L, Optimization in model reduction, International Journal of Control, 32 (1980), pp. 741–747.
[12] D. ML  L. T, A reassessment of the groundwater inverse problem, Water Resources Re-

search, 32 (1996), pp. 1131–1161.
[13] S. R, A reduced-order approach for optimal control of fluids using proper orthogonal decomposition,

International Journal for Numerical Methods in Fluids, 34 (2000), pp. 425–448.
[14] M. S  P. K, A geostatistical approach to contaminant source identification, Water Re-

sources Research, 33 (1997), pp. 537–546.
[15] K. S, A. M,  L. D, A quasi-convex optimization approach to parametrized model order re-

duction, Annual ACM IEEE Design Automation Conference: Proceedings of the 42nd annual conference
on design automation, San Diego, CA, (2005), pp. 933–938.

[16] A. T, R. A,  E. Z, Model reduction for optimization of rapid thermal chem-
ical vapor deposition systems, IEEE Transactions on Semiconductor Manufacturing, 11 (1998), pp. 85–
98.

[17] K. V, C. P’, D. R,  A. P, A posteriori error bounds for reduced-basis approxi-
mation of parametrized noncoercive and nonlinear elliptic partial differential equations, AIAA Paper
2003-3847, Proceedings of the 16th AIAA Computationoal Fluid Dynamics Conference, Orlando, FL,
(2003).

[18] K. W, O. G, B.  B W,  B. B, An optimization framework for goal-
oriented, model-based reduction of large-scale systems, 44th IEEE Conference on Decision and Control,
Seville, Spain, (2005).

CSRI Summer Proceedings 2007 49

IMPLEMENTING AND PROFILING OF A VARIABLE BLOCK MATRIX-MATRIX
MULTIPLY IN ML

IAN KARLIN‡ AND JONATHAN HU§

Abstract. This report discusses the implementation of a variable block matrix multiply within the multilevel
preconditioning package ML. In general, the matrix-matrix kernel dominates the multigrid setup time. We discuss
the advantages that a variable block multiply has over a point multiply. We then discuss refactoring key pieces of
the matrix matrix multiply, and show the benefits via numerical experiments. Finally, we discuss future directions
to make this fully available within a multigrid preconditioner. The resulting speedups from this work could prove
beneficial to any application that produces block matrices and uses multigrid preconditioning.

1. Introduction. The repeated numerical solution of large, sparse, linear systems is
central to many parallel simulations at Sandia. Within the linear solver, the choice of pre-
conditioning method can have a tremendous impact on the convergence and runtime of the
solver, and hence, the entire simulation.

For applications that give rise to symmetric positive definite linear systems, multigrid
methods are often a good choice of preconditioner. At Sandia, the main multigrid precondi-
tioning package is ML [4], part of the Trilinos solver framework [7]. ML provides a variety
of algebraic multigrid (AMG) methods, i.e., the entire multigrid method is built from a linear
system,

A1u1 = f1, (1.1)

that is provided by the application.
In AMG methods, the time to create the preconditioner can be considerable compared to

the time to apply the preconditioner. Within ML’s AMG setup, a major computational kernel
is the matrix-matrix multiply. It is used in the construction the grid transfer operators that
move information to and from coarser levels and in the coarse approximations to the operator
A1 in 1.1. Additionally, it is used to form the coarse matrix Ai, i > 1, which is often referred
to as an RAP calculation because Ai is the product of three matrices, R, Ai−1, and P. Typically,
matrix matrix multiplication accounts for over 50% of the time used to create an ML AMG
preconditioner.

Applications that have more than one degree of freedom (DOF) per node often lead to
block structured matrices. These matrices can be stored in a special format called variable
block row, in which the DOFs associated with a node are stored in a dense submatrix. This
suggests that we may be able to capitalize on the block structure in the setup and execu-
tion of the matrix matrix multiply in order to significantly speedup the setup of the AMG
preconditioner.

In this paper, we report on a new implementation and initial profiling of a matrix matrix
multiply method for variable block matrices. In §2, we give a brief multigrid overview. In
§3, we motivate why a block matrix matrix multiply is important to ML. In §4, we give an
overview of ML’s existing point matrix matrix multiply. In §5, we discuss the design and
implementation of the block matrix matrix multiply. In §6, we provide some initial numerical
profiling results. In §7, we suggest future directions. Finally, in §8 we present the conclusions
we draw from our work.

2. Multigrid Overview. Multigrid methods (e.g., [6, 8, 1]) are among the most efficient
iterative algorithms for solving the linear system, Ax = f , associated with elliptic partial

‡University of Colorado at Boulder, Department of Computer Science, Ian.Karlin@colorado.edu
§Sandia National Laboratories, jhu@sandia.gov

50 Variable Block Matrix-Matrix Multiply

differential equations. The basic idea is to damp errors by utilizing multiple resolutions in the
iterative scheme. High-energy (or oscillatory) components are efficiently reduced through
a simple smoothing procedure, while the low-energy (or smooth) components are tackled
using an auxiliary lower resolution version of the problem (coarse grid). The idea is applied
recursively on the next coarser level. An example multigrid iteration is given in Algorithm
1 to solve (1.1). The two operators needed to specify the multigrid method fully are the

Algorithm 1 Multigrid V-cycle consisting of Nlevels grids to solve A1u1 = f1.
1: {Solve Akuk = fk}
2: procedure multilevel(Ak, fk, uk, k)
3: if (k , Nlevels) then
4: uk = Rk(Ak, fk, uk);
5: rk = fk − Akuk ;
6: Ak+1 = PT

k AkPk;
7: uk+1 = 0;
8: multilevel(Ak+1, PT

k rk, uk+1, k + 1);
9: uk = uk + Pkuk+1;

10: uk = Rk(Ak, fk, uk);
11: else
12: uk = A−1

k fk ;
13: end if

relaxation (smoothing) procedures, Rk, k = 1, . . . ,Nlevels, and the grid transfers, Pk, k =
2, . . . ,Nlevels. Note that Pk is an interpolation operator that transfers grid information from
level k + 1 to level k. The coarse grid discretization operator Ak+1 (k ≥ 1) is specified by the
Galerkin product

Ak+1 = PT
k AkPk. (2.1)

The key to fast convergence is the complementary nature of these two operators. That is,
errors not reduced by Rk must be well interpolated by Pk. While constructing multigrid
methods via algebraic concepts presents certain challenges, AMG can be used for several
problem classes without requiring a major effort for each application.

3. Motivation for having a block matrix-matrix multiply. Applications governed by
systems of PDEs often lead to block structured matrices. Examples of such applications
are linear elasticity, chemically reacting flow, and compressible flow calculations. These
problems have multiple degrees of freedom (DOFs) associated with each grid point (node)
in the problem mesh. The group of DOFs at a node comprise a block of coefficients in the
matrix. Matrices with block structure can be stored in a variable block row (VBR) structure
[2, 9]. The salient feature of this matrix structure is that individual blocks are stored as
dense matrices. Hence, accessing column indices require fewer indirect references, and tuned
numerical routines may be used for the dense computation.

Profiling of ML’s point matrix matrix multiply has shown that the majority of time to
calculate the matrix product AB is in the lookup of B’s column indices. More specifically,
suppose A and (more importantly) B can be stored as VBR matrices. The reduction in lookups
of B’s column indices is directly related to the block size in B. If B has d × d blocks, then
the number of column indices is reduced by a factor of d2, compared to storing B as a point
matrix. We note that d = 3 is the smallest typical block size. It is not unusual for applications
to have d = 5 or even larger block sizes. Hence, a reduction of these indirect lookups should
lead directly to improvements in the overall runtime.

I. Karlin and J. Hu 51

4. Overview of the current point matrix matrix multiply. We first give a high level
logical overview of how ML performs a matrix-matrix multiply, A × B. For simplicity, Ai

denotes the subset of rows of A stored on processor i. First, rows of B are exchanged among
processors so that processor i has all the information that it needs to calculate Ai ×B. Second,
the column indices of B are stored in global numbering in a hash table for fast lookup. Third,
the local product Ai × B is calculated. Fourth, the product is converted back to local number-
ing. Descriptions of the major ML functions used in setup and execution of matrix matrix
multiplies in ML are given in Table 4.1. As mentioned in §1, the matrix-matrix multiply is

T 4.1
Important functions in ML for calculating the matrix product A × B.

Function Description

Convert Convert matrix from point to VBR format
Exchange Rows Communicates rows of B for the product Ai × B.
Matrix Matrix Multiply Performs actual matrix-matrix multiply
Back to Local Converts matrix column indices from global to local
Getrow Access single point or block row of a block matrix

an important kernel in the setup of ML’s multigrid preconditioners. It is used in the creation
of the grid transfer operators, Pi, from preliminary transfer operators, P(t)

i . For more details
on how P(t)

i is constructed, see [10]. Once P(t)
i is available, the prolongator Pi is formed via

the step

Pi = P(t)
i

Pi ← (I − ωiD−1
i Ai)Pi, (4.1)

where I is an identity matrix, ωi is a damping parameter, and Di is the diagonal of Ai. We
note that in some cases it is desirable to used repeated applications of (4.1), each of which
involves a matrix matrix multiply.

The matrix matrix multiply is also used heavily in the creation of the coarse grid operators
Ai, i > 1. Once Pi and Ri are available, then Ai is formed as in (2.1). Multiplications are
performed from right to left. Proceeding in this manner reduces the memory requirements
and operation counts in the intermediate product matrices.

5. Design and Implementation of block matrix matrix multiply. In this section, we
discuss the design and implementation strategy of the block matrix matrix multiply. As men-
tioned in §3, when the matrix A arises from a system of PDE’s, a block matrix multiply
has the potential to speedup of the entire multigrid setup, compared to the same calculation
with point matrices. This is largely due to multiplication with VBR matrices requiring fewer
indirect references.

There are two logical approaches to implementing a block multiplication. In the first ap-
proach, every function required to complete the multiplication is refactored to operate natively
on block matrices. While this avenue should lead to the best speedups possible, it would also
require a large amount of human effort. In the second approach, only certain time-intensive
kernels are refactored to operate on block matrices, while the remaining functionality lever-
ages existing point-matrix capabilities.

To keep this project within the scope of a summer, we chose the second approach. Nu-
merical studies in §6 demonstrate that this decision still leads to acceptable overall speedups.
In the remainder of this section, we discuss the major phases of the multiplication, our
changes to key phases, and potential benefits to refactoring the remaining phases.

52 Variable Block Matrix-Matrix Multiply

The first major component that we implemented is a function that converts point matri-
ces to VBR. This function plays four important roles. First, it was very convenient for testing
purposes. It allowed us to use existing point matrices to produce VBR matrices. Second,
this method is essential for converting (portions of) a matrix from point to block form after
exchange rows has been called. Third, this method allows us to convert an existing P(t) to
VBR, rather than having to generate P(t) in VBR format initially. 1 Fourth, this method con-
verts R back to VBR after it is created by transposing P. The convert function is sufficiently
flexible to be able convert a matrix both before and after rows of that matrix have been com-
municated. There are two different modes for the function: first, to convert matrices prior to
a call to exchange rows; second, to convert the data received by exchange rows. The convert
function performs a deep copy of data. An important feature of the convert before exchange
rows is called is to ensure that blocks are fully populated (dense) with any missing zeros. By
doing so, this speeds up the convert of any exchanged rows.

The second major component that we implemented was two getrow methods. One ex-
tracts from a VBR matrix a single point row, and the other extracts a single block row. The
capability to extract a point row from a VBR matrix allows us to use any existing ML matrix
function that requires point row access. In particular, this allowed us to reuse the exchange
row function (discussed below). The capability to extract a block row is critical for the core
matrix matrix multiply function.

The third major component that we implemented was the matrix matrix multiply kernel.
We began this summer project with an existing prototype block multiply. This prototype
was capable of squaring a square matrix with n × n blocks. However, it had several serious
limitations. It assumed a fixed block size and worked only in serial. From this prototype,
we produced a fully parallel matrix matrix multiply kernel that supports variable block sizes.
Tasks included defining a new VBR structure within ML, allowing for variable block sizes
for the left matrix and a fixed column width for the right matrix, and establishing correct
storage estimates for block matrices.

A function that we decided not to refactor is the exchange rows. As mentioned previously
in §4, exchange rows must be invoked to communicate rows of B before the product AB can
be calculated. Exchange rows accesses matrix data in point fashion (one row at a time).
Refactoring this function to access VBR matrices in block fashion could easily have required
the entire summer. Moreover, we would have had to ensure that the resulting function’s
efficiency and scalability were similar to that of the point version. However, because we
implemented a VBR matrix getrow that fetches one point row at a time, we were able to
reuse the point version of exchange rows.

Refactoring exchange rows may have longer term benefits, however, assuming that a
block version has similar performance characteristics to the point version. The cost of data
movement of the point version is over 95% of its total cost. A VBR version will still move
roughly the same amount of data. However, the data produced by a block exchange row would
already be in block format. In contrast, the data from the point version must be converted to
block format. The percentage of total time spent in the point exchange row and subsequent

1The first phase in which the matrix matrix multiply is used in the creation of P from P(t). (See (4.1).) From
initial performance runs it is unclear whether AP(t) multiplication is faster in point or in block form. This is due to
the sparsity of the blocks in P(t), which have nonzero entries only on their main block diagonal. If P(t) is in VBR
form, all zero entries within a block must be stored explicitly. This increases the effective number of nonzeros by
n2 − n times for relatively small n × n blocks. This also increases the amount of data that needs to be exchanged in
parallel by a corresponding amount in the exchange rows function. Finally, the number of arithmetic operations is
increased a factor of n, which is not be an important factor in the cost as mentioned in §3 due to the dominant cost
of indirect referencing in the matrix-matrix multiply. We estimate that the cost of converting the point matrix P to
VBR is 25% of the cost of creating P initially as a VBR matrix.

I. Karlin and J. Hu 53

convert varies with the amount of data on each processor. At 5000 DOFs per processor, the
cost is approximately 66% of the total multiply. At 40000 DOFs per processor, the cost is
approximately 25%. Regardless of work per processor, we have observed that the conversion
from point to block format requires approximately 25% of the time of the exchange row
routine. Based on this data, we expect that a block exchange row could decrease the runtime
of each multiply by 5-15%. One necessary component that we have not implemented, but that
must be, is back to local. In ML, the product of two matrices is a matrix with column indices
that are globally numbered. In order for the product to be used in subsequent calculations,
the column indices must be converted to local numbering. Because the underlying VBR data
structure is quite different than that of the ML point matrix, ML requires a new method
to convert VBR matrices from global to local column indices. Without this capability, the
conversion to local is possible but is computationally infeasible.

Finally, we decided not to refactor the point matrix transpose. While not a core piece
of the matrix matrix multiply, this function is necessary to the calculation (2.1). We expect
that the difference in cost between a block and point transpose operation will be similar to
that of exchange rows. This is because each is bound by data transfer, and each exchanges
approximately the same information between processors. However, the result of the point
transpose will be a fairly dense matrix and will therefore be costly to convert. For this reason,
we believe that a native block matrix transpose will be beneficial. The effort to write a block
transpose should be significantly less than writing a new exchange rows routine.2

6. Results. Testing and profiling of functions discussed in §5 were performed on the
Sandia CSRI machine QED. QED is a 32 node, 64 processor cluster with 2GB of memory per
node. Tests were run on three different size matrices, described in Table 6.1. These matrices
are typical of those used in elasticity problems and contain 3× 3 subblocks. Processor counts
from 1 to 40 were used in tests. The larger matrices were not run on the smallest processor
counts due to memory limitations. Each calculation involved squaring the matrix. This was

T 6.1
Test matrices

Matrix Degrees of Freedom Number of non-zeros

I 26460 1928958
J 201720 15494286
K 403440 31311086

done since it is much easier to setup and run tests in this fashion. These tests should be
indicative of the potential performance gains from embedding the block multiply fully within
the setup of a multigrid cycle for two reasons. First, in the ML RAP process, the intermediate
matrices will be have fewer columns than A, and therefore require less time to convert and
exchange data than with A itself. Second, 3 × 3 blocks represent the smallest block size for
which the routine can be expected to be used. Other typical sizes such as 3 × 6, 5 × 5 and
6 × 6 will yield larger gains in performance due to less indirect addressing per calculation.

As shown by Figure 6.1(a) the new block multiply results in a 1.3 to 2.3 speedup in the
overall multiply calculation. This is due to the 2 to 4.5 speedup of the core multiply routine
itself, as shown in Figure 6.1(b). Figures 6.2(a) and 6.2(b) show the component breakdown
of the overall costs of the point and block routines for matrix J. The exchange rows function
in each routine takes approximately the same time for the same processor count. The main

2Note that this must be written from scratch, or after exchange rows is rewritten, as the current transpose routine
uses a multiplication by the identity in its operation which requires a call to exchange rows.

54 Variable Block Matrix-Matrix Multiply

0 5 10 15 20 25 30 35 40
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Processors

S
pe

ed
up

Overall Block Multiply Speedup

I
J
K

(a) Overall Speedup

0 5 10 15 20 25 30 35 40
1.5

2

2.5

3

3.5

4

4.5

5

Processors

S
pe

ed
up

Block Multiply Speedup

I
J
K

(b) Multiply Speedup

F. 6.1. Performance gains from block multiply

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Processors

R
un

tim
e

Point Multiply Costs

Exchange Rows
Multiply

(a) Point Multiply

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Processors

R
un

tim
e

Block Matrix Costs

Convert 1
Exchange Rows
Convert 2
Multiply

(b) Block Multiply

F. 6.2. Component costs for multiplying the J matrix

advantage of the block routine is from the reduced cost of the multiply routine. The time spent
in the two conversions, however, offsets some of this reduction. The conversions account for
approximately 25% of the overall runtime, and are a potential spot for further optimization.

Note that the time for exchange rows in both routines increases when moving from 20 to
40 processors. As there was no attempt to load balance other than the equal distribution of
rows among processors this 3 fold increase could be due to a bad data exchange pattern or a
bad parallel distribution of matrix rows. In a real application load balancing would likely fix
this issue. Figures 6.3(a) and 6.3(b) show the scaling of the convert of the B matrix to VBR
and the block multiply. The results are normalized to the speed per nonzero of the I matrix
running in serial. Scaling of exchange rows is not shown as previous work has explored its
scaling properties, and no work was done on this function during this project. The scalability
of the second convert was not studied as its cost is approximately 25% of cost of exchange
rows.

What is shown in 6.3(a) is the convert becomes more efficient per nonzero converted as
the work per processor decreases up to a certain point, where the trend reverses. In addi-
tion for larger matrices the convert is less efficient than for smaller ones. For the multiply
6.3(b) shows that the scaling of the multiply is tied to the number of processors used for the
problem. With the exception of the 5 processor example for the J matrix, the efficiency of

I. Karlin and J. Hu 55

0 5 10 15 20 25 30 35 40
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
el

at
iv

e
S

pe
ed

Processors

Speed per data element converted

I
J
K

(a) Convert Scaling

0 5 10 15 20 25 30 35 40
0.7

0.75

0.8

0.85

0.9

0.95

1

Processors

R
el

at
iv

e
S

pe
ed

up

Speed per data element multiplied

I
J
K

(b) Multiply Scaling

F. 6.3. Relative speed of convert and multiply routines

the computation is nearly identical for each matrix when the number of processors is held
constant.

7. Future work. To fully integrate the block matrix-matrix multiply into the ML multi-
grid setup phase, a few functions need to be finished. More specifics are outlined in the ML
developers documentation [5]. A VBR version of back to local should be written. The writing
of a wrapper routine modeled after the current driver and ML 2matmult() would make the
routine much more accessible for a developer to call.

Within the current design approach, if one were looking for additional efficiency, the fol-
lowing are the best candidates for performance gains. By changing the convert to handle ma-
trices exchanged in point format, P(t) could be more efficiently exchanged. This may increase
the convert time on the exchanged rows but would decrease the exchanged information to 1/n
of its current amount, where n×n is the block size. The convert routine has not been profiled,
and there is a chance it has inefficiencies that could eliminated. Also, while the multiply has
no obvious inefficiencies, it may benefit from calls to BLAS[3] routines, especially for larger
block sizes. Profiling of this routine might uncover other areas for improvements, though this
is unlikely as it was derived from an efficient point multiply. A VBR matrix vector multiply
could also lead to performance gains in the application of the multigrid preconditioner.

If full fledged VBR support were desired, we suggest the following order for the im-
plementation. First if a VBR transpose is easy to write, or if an EPETRA function can be
utilized, this would be the easiest function to write with potentially the largest performance
gains. If the transpose is not easy or requires a block exchange row function to work, then the
creation of a block P(t)should be the first priority. A new exchange rows function should be
lowest priority, unless a block transpose requires it. This is because the expected reduction
in runtime of a new block exchange rows is small in comparison to the effort to refactor the
code.

8. Conclusions. This report summarizes a summer project to implement a block matrix-
matrix multiply within the multigrid preconditioning package ML. We have demonstrated
2-4.5 times speedups in the multiply kernel for linear systems with 3 × 3 blocks, and overall
speedups of 1.3-2.3, although these results are likely a lower bound on actual performance.
Development time was dramatically reduced through the use of a point-to-VBR converter
function and existing point matrix capabilities, while still allowing for significant speedups.
While we chose to refactor only portions of the multiply, we believe that the results from the
initial profiling show this decision was correct.

56 Variable Block Matrix-Matrix Multiply

REFERENCES

[1] W. L. B, V. E. H,  S. MC, A multigrid tutorial, Second Edition, SIAM, Philadelphia,
2000.

[2] S. C, M. H,  G. L, A proposal for a sparse BLAS toolkit, tech. report, Cray Research Inc.,
Eagen, MN, 1993.

[3] J. J. D, J. D. C, S. H,  I. D, A set of level 3 Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software, 16 (1990), pp. 1–17.

[4] M. W. G, C. M. S, J. J. H, R. S. T,  M. G. S, ML 5.0 smoothed aggregation user’s
guide, Tech. Report SAND2006-2649, Sandia National Laboratories, 2006.

[5] M. W. G, C. M. S, J. J. H, R. S. T, M. G. S,  I. K, ML developer’s guide. 2007.
[6] W. H, Multigrid Methods and Applications, vol. 4 of Computational Mathematics, Springer–Verlag,

Berlin, 1985.
[7] M. A. H, R. A. B, V. E. H, R. J. H, J. J. H, T. G. K, R. B. L, K. R. L,

R. P. P, E. T. P, A. G. S, H. K. T, R. S. T, J. M. W,
A. W,  K. S. S, An overview of the Trilinos project, ACM Trans. Math. Softw., 31
(2005), pp. 397–423.

[8] U. T, C. O,  A. S̈, Multigrid, Academic Press, London, 2001.
[9] R. S. T, M. H, S. A. H,  J. N. S, Official Aztec user’s guide version 2.1, Tech.

Report SAND99-8801J, Sandia National Laboratories, 1999.
[10] P. V̌, J. M,  M. B, Algebraic multigrid based on smoothed aggregation for second and

fourth order problems, Computing, 56 (1996), pp. 179–196.

CSRI Summer Proceedings 2007 57

MODEL REDUCTION BY COMPONENT MODE SYNTHESIS:
CRAIG-BAMPTON METHOD WITH LINEAR EXAMPLE

REGINA M. DAVIS‡ AND RICHARD B. LEHOUCQ§

Abstract. Component mode synthesis (CMS) is a model reduction technique in which the components of a
larger structure are condensed to reduced-order models and reassembled to produce a reduced-order model of the
entire system. In this document, a brief introduction of CMS will be given and then Craig-Bampton’s method for
CMS will be explained in more detail and used to model the linear response of a rod, spring at one end and free-ended
at the other, when a ping excitation occurs at its free end. The intent of this document is an elementary set of notes
based on a first time reading of CMS methods.

1. Introduction. In structural dynamics, the topic of model reduction surfaces upon
consideration of large multi-degree of freedom systems. Due to the complexity of such struc-
tures, solutions to the large system of equations become burdensome and costly. Finite ele-
ment models, (although widely used, highly favored, and perhaps the most powerful models
used for complex systems), are unfortunately expensive in these cases as they are difficult to
pull together, and untimely to produce. Model reduction is then the theory of approximating
higher order systems by lower order systems while preserving as much of the systems’ be-
havior as possible in an effort to increase the time efficiency and decrease the expense of the
analysis.

Component mode synthesis employs the idea of dividing a large structure into smaller
sub-structures, investing most of the analysis into these smaller components, and in turn
reaping a decent approximation of the complete system. Component mode synthesis has
several applications, primarily in coupling reduced-order models of components in a larger
system, test verification of finite element models, and to achieve an understanding of the
dynamics of multimillion-DOF models [1, ch.17 pp.532].

The underlying concept behind CMS is the notion that the components’ physical coor-
dinates can be represented in terms of a set of generalized coordinates from the following
transformation:

q = Cp. (1.1)

The transformation matrix, C, also called the component mode matrix, pre-multiplies the
generalized coordinates, p, that describe the motion of the system. The columns of the com-
ponent mode matrix, called component modes, are assumed modes describing the physical
displacements, q, of each coordinate.

There are several methods in CMS which can be used, depending on the components’ ge-
ometries and boundary conditions. While each method contributes to the collective strength
of CMS, discussion will be limited to the Craig-Bampton fixed-interface method. The intent
of this document is an elementary set of notes based on a first time reading of CMS meth-
ods. The reader is referred to [1, ch.17 pp.532] and the open literature for surveys and more
involved discussions.

2. Basics. Consider a clamped-free rod divided as shown in Figure 2.1(a).
The structure has been divided into three components, α, β, and γ. The α component is

broken down into internal coordinates and interface coordinates (Figure 2.1(b)), where I rep-
resents the internal coordinates and E represents the interface coordinates[1, ch.17 pp.533].
An internal coordinate is any coordinate within the component not associated with any

‡New Mexico State University, reginab@nmsu.edu
§Sandia National Laboratories, rblehou@sandia.gov

58 Model Reduction by CMS

��
��
�
��
�
� q q q q q q q

� - � -� -
γ α β

(a)

q q q q
α

(b)

E I E

s s s s s-
qn

E

-
q1

-
q2

I

-
qn−2

-
qn−1

E

(c)

F. 2.1. (a)Clamped-free rod divided into α, β, and γ components (b)the α component with internal and
interface coordinates shown (c)schematic of a typical component with n-DOF

boundary or constraint. An interface coordinate is any coordinate within the component for
which another component is coupled. Interface coordinates between components are related
by a set of constraints. The α component, as shown, has two internal coordinates and two
interface coordinates.

The component mode matrix for the α component is composed of two types of assumed
modes: constraint modes and fixed interface modes. A constraint mode is a static solution
where all but one boundary1 DOF is held zero, and the remaining one is set to one. A fixed-
interface mode is a static solution where all boundary DOF are held zero. Each system has a
set of fixed-interface modes equal to the number of interior nodes.

Similarly, the component mode matrix for the β component is also composed of con-
straint modes and fixed interface modes. Although the right boundary for the β component
is not an interface coordinate, the required constraints on the component allow for it to be
modeled as one.

Constraint modes and fixed-interface modes are the two component modes used in Craig-
Bampton’s method. There are other component modes included in CMS, such as rigid-body
modes as would appear in the component mode matrix for the γ component due to the the
rigid-body coordinate on the left boundary, but these are not needed in Craig-Bampton’s
method nor will they appear in the example to follow. They will therefore not be discussed.

One final feature of the component, which may be obvious but will be presented anyhow,
is that it can be modeled with as many elements as desired. While only three elements of

1in these definitions, a component’s boundary is simply any coordinate lying on the geometric boundary of the
component; in the case of the α component, the boundaries are represented by the interface coordinates.

R.M. Davis and R.B. Lehoucq 59

the α component have been illustrated, it could potentially have n-DOF with the schematic
shown in Figure 2.1(c).

3. The Component Mode Matrix by Craig-Bampton Method. The component mode
matrix will be developed from Craig-Bampton’s fixed-interface transformation. The discus-
sion that follows and discussion in Section 4 resemble that in Craig and Kurdila[1, ch.17
pp.532-37,557-59].

For simplification and for clarity, the interface coordinates will be referred to as the
boundaries. Thus, E will be called B and the order I → B will always be used. It follows, the
stiffness matrix, K, for the component in Figure 2.1(c) has the form2

K =
[

Kii Kib

Kbi Kbb

]
.

Likewise, the mass matrix, M, is

M =
[

Mii Mib

Mbi Mbb

]
.

The component mode matrix, C, will consist of constraint and fixed-interface modes as
described in Section 2. The physical coordinates can then be represented as a linear combi-
nation of the constraint modes and the fixed-interface modes as follows:

q = Φkpk + Ψcpc. (3.1)

Where Φk and Ψc represent the fixed-interface modes and the constraint modes respectively.
The subscript k is used to denote the number of retained, or kept, fixed-interface modes and
pk refers to the generalized coordinates corresponding to the fixed-interface modes. The
subscript c is used to denote the number of constraint modes and likewise, pc refers to the
generalized coordinates corresponding to the constraint modes.

The modes can be divided into internal (i) and boundary (b) coordinates,

Φk =

(
Φik

Φbk

)
, Ψc =

(
Ψic

Ψbc

)
.

By their definition,

Φbk = 0bk,
Ψbc = Ibc.

Thus,

Φk =

(
Φik

Obk

)
, Ψc =

(
Ψic

Ibc

)
. (3.2)

The number of constraint modes is equal to the number of boundaries on the component,
(c = b). Replacing c with b in (3.2) and expanding (3.1) gives

q =
(

qi
qb

)
=

[
Φik Ψic

0bk Ibb

] (
pk
pb

)
, (3.3)

2If r and c are the number of rows columns of a matrix respectively, then any matrix having the notation Arc has
the condition Arc ∈ R

r×c; and any vector ar is a column array with dimensions (r × 1). Also note some matrices are
only given one subscript. This does not denote a dimension; it only gives the matrix a label (see eqn 3.1).

60 Model Reduction by CMS

for which the component mode matrix is

C =
[
Φik Ψib

0bk Ibb

]
.

The internal partition of the fixed-interface modes, Φik, is determined from the following
eigenproblem: (

Kii −
(
ω2

i

)
k

Mii

)
(φi)k = 0

or

(Kii −MiiΩii)Φii = 0.

where Φik is composed of the first k modes of Φii. The internal partition of the constraint
modes, Ψib, however, are determined from the following static definition:[

Kii Kib

Kbi Kbb

] (
Ψib

Ibb

)
=

(
0ib

Γbb

)
,

for which Γbb are the reaction forces at each constraint. Solving:

Ψib = −K−1
ii Kib

and

Ψc =

(
−K−1

ii Kib

Ibc

)
.

Recall, n is the DOF, n = i + b, and k is the number of kept fixed-interface modes. For
clarity, observe the following dimensions for (3.3)

q
(n × 1) =


qi

(i × 1)

qb
(b × 1)

 =


Φik

(i × k)

0
(b × k)

Ψib

(i × b)

I
(b × b)




pk
(k × 1)

pb
(b × 1)


4. Reducing the Model. Model reduction in CMS occurs due to the transformation

matrix, C, in (1.1), by which the physical coordinates, q, are described by a reduced number
of generalized coordinates, p. Let m be the number of generalized coordinates, where m < n.
Equation 1.1 can be expressed with dimensions as

q︸︷︷︸
n×1

= C︸︷︷︸
n×m

p︸︷︷︸
m×1

. (4.1)

The equation of motion for the undamped system is:

Mq̈ +Kq = f. (4.2)

Substitution of (4.1) into (4.2) gives

MCp̈ +KCp = f.

R.M. Davis and R.B. Lehoucq 61

To ensure the orthogonality of all the component modes to the residuals, apply Galerkin’s
method. Require

yT (f −MCp̈ +KCp) = 0, ∀ y ∈ span {C} . (4.3)

Therefore,

CT MCp̈ + CT KCp = CT f

or

Mrp̈ +Krp = fr,

where

Mr = CT MC, Kr = CT KC, fr = CT f.

Note, Galerkin’s condition in (4.3) is also the principle of virtual work.

5. Understanding the Reduction. Now the question may arise, “How does this reduc-
tion work?” Or another to ask is “What effect will this reduction have on the solution to
the system’s dynamic behavior?” In an attempt to answer these questions, the reduction will
be broken down into finer detail by way of the the homogeneous solution to the equation of
motion,

Mẍ +Kx = 0. (5.1)

Assume an exponential solution,

q = xeωt. (5.2)

Consider substitution of (5.2) into (5.1). The result yields the eigenvalue problem(
K −

(
ω2

o

)
j
M

)
(xo) j = 0 j = 1, 2, · · · , n

or

(K −MΩo) Xo = 0, (5.3)

where the subscript o denotes the eigenvectors, modes, and eigenvalues, frequencies, of the
un-reduced n-DOF system. Now, let

p = yeωt. (5.4)

Substitution of (5.4) into (1.1) gives

q = Cyeωt. (5.5)

Given C is square, (n × n), the resulting eigenvalue problem is(
CT KC −

(
ω2

o

)
j
CT MC

) (
yo

)
j = 0 j = 1, 2, · · · , n

or

(Kr +MrΩo) Yo = 0, (5.6)

62 Model Reduction by CMS

1 2 3 4 5 6 7 8

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

coordinate

no
rm

al
 d

is
pl

ac
em

en
t

mode 1
mode 2
mode 3
mode 4

F. 5.1. The first four modes of the original, 8 DOF system (in blue) are compared to the first four modes in
the unreduced, 8 DOF CMS problem (in red). The CMS modes cannot be seen because they are identical to the true
modes of the original system.

and by (5.2) and (5.5),

Xo = CYo. (5.7)

Again, the subscript o denotes the un-reduced system. Here, Yo represents the transformed
eigenvectors of the un-reduced system. Equation 5.6 suggests that, for any (n × n) C, the
resulting modes, Xo, and frequencies, Ωo are identical to those in (5.3).

However, when m < n, the resulting modes and frequencies are similar to those of the
un-reduced system. In other words, for

(Kr +MrΩ) Y = 0,

then

X ≈ Xo (5.8)

and

Ω ≈ Ωo. (5.9)

The relationship in (5.7) is no longer true, it is only an approximation. The relationship
between X and Y can be determined from Galerkin’s condition in a least squares sense. This
results in3

X ≈ CY = C
[
CT C

]−1
CT X,

or

Y =
[
CT C

]−1
CT X. (5.10)

Equations 5.8 and 5.9 give rise to the following:

(K +MΩo) Xo = 0,
(K +MΩ) X = r.

3The columns of C are linearly independent and therefore the inverse of CT C exists.

R.M. Davis and R.B. Lehoucq 63

1 2 3 4 5 6 7 8

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

coordinate

no
rm

al
 d

isp
la

ce
m

en
t

(a) Modes 1-4

1 2 3 4 5 6 7 8

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

coordinate

no
rm

al
 d

isp
la

ce
m

en
t

(b) Modes 5-7

F. 5.2. (a)The first four modes of the original, 8 DOF system (in blue) are compared to the first four modes
of the reduced, 7 DOF CMS problem (in red). (b)The remaining three modes of the reduced, 7 DOF CMS problem
are compared to modes 5-7 of the original unreduced system.

In an effort to compare the residuals for each reduction, consider:

‖r‖k−1 =
√

rT K−1r (5.11)

For the case when m = n,

‖ro‖ = 0

In all other cases where m < n,

‖r‖ > 0

Let the residual vector for each reduction, r, be an (m × 1) array of the residuals for each
mode.

r =
[
‖r1‖ ‖r2‖ · · · ‖rm‖

]T

6. Linear Homogeneous Solutions. Perhaps the most straightforward representation
of how the reduced model compares to the original, full scale model, is the comparison of the
homogeneous solution each model predicts. Take, the linear, free-free ended, homogeneous
n-DOF system shown in the schematic in Figure 6.1 with the following conditions:

s s s s s-
qn

E

-
q1

-
q2

I

-
qn−2

-
qn−1

E

F. 6.1. Free-free ended component with n-DOF, no bending

Mq̈ +Kq = 0,
q(0) = x j,

64 Model Reduction by CMS

where (
K − ω jM

)
x j = 0 j = 1, 2, · · · ,Nn

The solution to this system is simply,

q = x j cos(ω jt) (6.1)

Replacing q with Cp in this example gives, for C ∈ Rn×m and m < n,

Mrp̈ +Krp = 0,
p(0) = y j,

where (
K − ν jM

)
y j = 0 j = 1, 2, · · · ,Nm

Similarly, the solution to this system is,

p = y j cos(ν jt). (6.2)

The solution for the generalized coordinates in (6.2) can be compared to the “true” solution
for the physical coordinates in (6.1) by the transformation matrix C:

q̃ = Cy j cos(ν jt). (6.3)

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

remaining modes

re
sid

ua
l

a

5DOF remaining

6DOF remaining

b

c

d

7DOF remaining

F. 6.2. Residuals for the 8DOF with 1, 2, ..,6 reductions; (a)one reduction, seven modes remaining, second
mode - Fig 6.3(a); (b)one reduction, seven modes remaining, fourth mode - Fig 6.3(b); (c)one reduction, seven modes
remaining, sixth mode - Fig 6.3(c); (d)three reductions, five modes remaining, third mode - Fig 6.3(d)

An 8DOF model with the geometry shown in Figure 6.1, has two constraint modes
and six fixed-interface modes. In reduction, the constraint modes and low-frequency fixed-
interface modes are retained. Figure 6.2 shows the residual progression as fixed-interface
modes are removed one at a time. Figure 6.3 shows the corresponding displacements for four
of the coordinates, q (6.1), compared to the corresponding CMS approximations, q̃ (6.3),
labeled in Figure 6.2. Note the value of the residual suggests how much the approximated
CMS solution has strayed from the true solution.

R.M. Davis and R.B. Lehoucq 65

0 10 20 30 40 50 60 70
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

di
sp

la
ce

m
en

t

(a) Second mode oscillation after one reduction

0 1 2 3 4 5 6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

di
sp

la
ce

m
en

t

(b) Fourth mode oscillation after one reduction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

di
sp

la
ce

m
en

t

(c) Sixth mode oscillation after one reduction

0 5 10 15
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

di
sp

la
ce

m
en

t

(d) Third oscillation after three reductions

F. 6.3. (a)The displacements for four coordinates in the fourth mode for the full, 8DOF model. (b)The
displacements for four coordinates in the fourth mode after one reduction is made. Solid curves are the“true”
displacements and the dashed curves are displacements obtained from one reduction.

For simplicity, the above illustration was made by way of an 8DOF, free-free ended,
homogeneous system. Higher-ordered systems provide for better approximations by CMS.
Consider the residual plot for the 16DOF in Figure 6. The above process of comparing the
residuals to the true and approximated displacements was repeated for the 16DOF, 32DOF,
and 64DOF system and the following observations have been made: situations which lie on
the outside line of the residual plot have experienced a significant change in frequency and are
noticeably poor approximations to the true solution due to their large change in frequency, as
observed the CMS approximations in Figure 6.3(c) with 6.2; all other situations lying on the
n − 2 line or below are relatively good approximations to the true solution, (Figure 6.3(a,b,d)
with 6.2).

7. A Linear Application of CMS. In the previous example, the routines were formu-
lated so as to produce only one mode and frequency in the displacement solutions. Problems
of more interest contain a combination of all the modes in their solution. CMS will now
be applied to a practical example in order to gain a better understanding of the concept of a
reduced model and CMS capabilities.

Consider the spring-free rod in Figure 7.1. Let initial displacements and velocities for all
coordinates be equal to zero, and let the impulse be applied at t = 0.

As an example, Figure 7 shows the accelerations at the right end of a 32DOF due to a
short impulse at time t = 0 (cyan). The plot also shows the CMS acceleration approximations

66 Model Reduction by CMS

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

remaining modes

re
sid

ua
l n−2 line

F. 6.4. Residuals for the 16DOF, free-free ended, homogeneous systems

��
�
��
�
��
� q q q q q q q��

��
�

impulse

F. 7.1. Rod with linear spring on one end and free-ended at the other end. Short impulse applied at time t=0.

when only 8 component modes are used to estimate the same response (red). Note the absence
of higher frequency oscillation in the reduced-order model. This is due to the fact that the
8 modes retained in the reduction were those corresponding to the eight lowest frequencies
from the eigenvalue problem described in Section 5. In other words, the high frequencies that
appear in the real solution have been removed, or discarded to obtain the reduced solution.

0 50 100 150 200 250 300 350
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

ac
ce

le
ra

tio
n

True 32DOF
CMS with 8DOF

F. 7.2. True acceleration response at the rod’s free end for 32DOF when short impulse is applied at t=0
(cyan) compared to CMS approximation for the same response modeled as 8DOF (red).

8. Summary. In short, Component Mode Synthesis and its applications in complex
structures has been explained. Craig-Bampton’s method of using constraint modes and fixed-

R.M. Davis and R.B. Lehoucq 67

interface modes to form the component mode matrix has also been explained and was used to
demonstrate CMS approximations in linear examples. Homogeneous displacement solutions
were used to emphasize the details of how CMS approximations compare to true solutions;
and finally CMS was applied to a practical linear example in order to illustrate the transfor-
mation that takes place under CMS. Figure 7 suggests, thus far, that CMS is an appropriate
model reduction method under the linear conditions described in this document. Further
investigation under additional conditions such as bending, non-linearities, 2-D models, mul-
tiple components are certainly other areas of interest in CMS, but are not discussed in this
document.

REFERENCES

[1] R. R. C, J.  A. J. K, Fundamentals of Structural Dynamics, John Wiley and Sons, Inc., sec-
ond ed., 2006.

CSRI Summer Proceedings 2007 68

CONSTRAINED EIGENVALUE PROBLEMS

CHRISTOPHER G. BAKER§ AND RICHARD B. LEHOUCQ¶

Abstract. This note proposes an improved algorithm for the numerical solution of symmetric eigenvalue prob-
lems with constraints in Salinas. We briefly review the current approach, explain its deficiencies, and then propose
a new algorithm. In addition to the algorithm’s improved stability, an inner iteration is not needed—an applica-
tion of the preconditioner is all that is required. Moreover, redundant constraints (characterized by a rank deficient
constraint matrix) are not problematic.

1. Introduction. The numerical solution of the constrained eigenvalue problem[
K CT

C 0

] [
x
y

]
=

[
M 0
0 0

] [
x
y

]
λ . (1.1)

for the low energy modes is required by Salinas [2]. The matrices K,M ∈ Rn×n are symmet-
ric/positive semi-definite. The matrix C is m × n, r = rank(C), r ≤ m < n, and is not assumed
to be of full row rank.

The eigenvalue problem (1.1) is the optimality system for the following constrained
eigenvalue problem: Find (x, λ) so that

Kx = Mxλ subject to Cx = 0. (1.2)

The vector y represents the Lagrange multipliers.

2. Existing approach. The existing approach in Salinas is to directly attack the aug-
mented eigenvalue problem (1.1). This is done by using the ARPACK/PARPACK software in
a shift-invert mode [5, 6]. The shift-invert mode requires solving for w systems of the form([

K CT

C 0

]
− σ

[
M 0
0 0

])
w =

[
M 0
0 0

]
z . (2.1)

The reverse-communication interface of ARPACK requires only that Salinas provide methods
for applying the Krylov subspace operator, the shift-invert operator, and the augmented mass
matrix. Unfortunately, this approach is unstable and stems from using a preconditioned inner
iteration to approximate w even if the associated residual is small. Because the augmented
system (1.1) has infinite eigenvalues, small errors in the approximation to w computed can
be dramatically amplified. Moreover, rank deficiency in C compounds this amplification
because then the linear system (2.1) does not have a unique solution. Expecting the Krylov
based eigensolver in Anasazi to compute the same eigenpairs as ARPACK is a foolhardy task.

One drawback of a shift-invert approach such as above is the need to accurately solve
the linear system. By exploiting one of a member of the class of preconditioned iterative
eigensolvers (see, for example, [1]), this requirement on the exact solve can be relaxed for
use as a preconditioner. The benefit of this is that the accuracy of the linear solve affects
only the convergence of the eigensolver, not its solutions. This should be contrasted with a
shift-invert Krylov subspace method, where the solutions of eigensolver are defined by the
accuracy of the shift-invert solver.

The preconditioned iterative solvers, such as the Block Davidson solver [1] and the Lo-
cally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [4] solver present in

§Florida State University, School of Computational Science, cbaker@scs.fsu.edu
¶Sandia National Laboratories, rblehou@sandia.gov

C.G. Baker and R.B. Lehoucq 69

Anasazi, operate on a matrix pencil (A, B), where A is symmetric and B is symmetric positive-
definite. Note that neither of the augmented matrices in (1.1) are positive-definite. One ap-
proach to addressing this is to ensure that the eigensolver’s iteration sequence remains in a
subspace where one of the matrices is positive-definite. Consider the choices from (1.1):

A =
[
K CT

C 0

]
and B =

[
M 0
0 0

]
.

The preconditioned eigensolvers currently operate in Salinas via the CLOP precondi-
tioner of Clark Dohrmann. This approach works as follows. The CLOP preconditioner re-
turns solutions of the form

[
x y

]T
, where Cx = 0 and y = 0. The nature of these two

eigensolvers is such that test subspaces generated in this manner will produce like test sub-
spaces. As a result, the iteration sequence is always in a subspace where B is positive definite
so that the application of the Block Davidson and LOBPCG is well-defined. Furthermore,
the x-component of the iterates satisfies the orthogonality constraint, so that minimizing the
Rayleigh quotient for the pencil (A, B) will solve the constrained eigenvalue problem (1.1).

This approach, using CLOP with the preconditioned eigensolvers, is not without its draw-
backs. By explicitly enforcing the constraint and substituting zeros for the Lagrange multipli-
ers in the iteration sequence, the method does not explicitly solve the optimality system (1.1).
Therefore, the satisfaction of the constraints in the solution is entirely dependent on the level
of constraint satisfaction provided by the solver. Also, because the Lagrange multipliers are
fixed to zero, the direct residuals for the eigenproblem (A, B) will never reach zero, because
the constraints generally prevent x from being an eigenvector of (K,M):[

K CT

C 0

] [
x
0

]
−

[
M 0
0 0

] [
x
0

]
λ =

[
Kx − Mxλ

0

]
.

This requires that the stopping conditions for these methods require modification.

3. Optimality Characterization. This section considers the optimality characterization
for the solution of the constrained eigenvalue problem (1.2). We attempt to describe the
proposed approaches to this constrained eigenvalue problem in terms of classical constrained
optimization techniques (e.g., Lagrangian minimization, penalty methods). This allows us to
consider a wider number of approaches for solving this problem.

Consider the formulation of the problem as the minimization of the Rayleigh quotient
subject to the constraints:

minimize f (x) �
1
2

xT Mx
xT Kx

subject to Cx = 0 .

Note the gradient of this function:

∇ f (x) �
1

xT Mx
(Kx − Mxθx) , θx =

xT Kx
xT Mx

.

Consider the Lagrangian of this function:

L(x, y) = f (x) − yT Cx

and its gradient:

∇L(x, y) =
[
∇ f (x) −CT y

Cx

]
.

70 Constrained Eigenvalue Problems

By considering stationary points of the Lagrangian, i.e., ∇L(x, y) = 0, we recover the familiar
saddle-point problem: [

Kx − Mxθx

Cx

]
=

[
CT y

0

]
or [

K CT

C 0

] [
x
−y

]
=

[
M 0
0 0

] [
x
−y

]
θx .

A penalty method for this function could take the form

φρ(x) =
1
2

xT Kx
xT Mx

+
1
2
ρ‖Cx‖2 .

Clark Dohrmann proposed this in his note, suggesting the minimization of

φρ(x) =
1
2

xT Kx
xT Mx

+ ρxT CT Cx .

A penalty method benefits by removing the constraint on the minimization. However, as
Clark noted, difficulties associated with a penalty method include the trade-off between ill-
conditioning associated with large penalty coefficient ρ and the need for a large ρ to ensure
that the minimizer satisfies the constraints.

Alternatively, consider the unconstrained minimization of the following function
(from (4.2)):

f̂ (x) =
1
2

xT (PKPT + ρĈ)x
xT (PMPT + Ĉ)x

.

The analysis in Section 4 shows that the critical points of f̂ satisfy one of the following:
1. Cx = 0 and f̂ (x) = λ, where λ is an eigenvalue of the constrained eigenvalue prob-

lem (i.e., (VT
2 KV2,VT

2 MV2)); or
2. Cx , 0 and f̂ (x) = ρ.

If ρ is greater than the largest of the targeted eigenvalues of (1.2), then an unconstrained
minimization of f̂ yields the desired solutions to the constrained eigenvalue problem (1.2).
In this way, the constrained problem can be transformed into an unconstrained problem. The
proposed unconstrained minimization can be solved via the eigenvalue problem (4.2).

4. Proposed approach. Our proposed approach reformulates the constrained eigen-
value problem (1.1) to avoid the instability of using a Krylov based eigensolver. We only
assume matrix-vector products with K, M, C and N−1 (where N is some suitable approxima-
tion to K). Our solution does not store the Lagrange multipliers. We assume that it is not
feasible to compute a basis for the null space of C.

Multiply the eigenvalue problem (1.1) with the block diagonal matrix[
S 0
0 I

]
.

For now, we will assume nothing about S except that it is symmetric/positive definite. Later
developments will explore the consequences of different choices of S . Application of this
block diagonal preconditioner to (1.1) results in[

S −1 0
0 I

] [
K CT

C 0

] [
x
y

]
=

[
S −1K S −1CT

C 0

] [
x
y

]
=

[
S −1M 0

0 0

] [
x
y

]
λ .

C.G. Baker and R.B. Lehoucq 71

Note that for a solution (
[
x y

]T
, λ), we have

S −1Kx + S −1CT y = S −1Mxλ .

We wish to solve for y so as to condense out the Lagrange multipliers. Pre-multiplying by C
and redistributing terms yields

CS −1CT y = CS −1(Mλ − K)x .

If C has full row-rank, then CS −1CT is invertible. In the case that C does not have full row-
rank, we must resort to its SVD-based pseudoinverse

(
CS −1CT

)†
[3]. In either case, it follows

that that
(
CS −1CT

)†
C =

(
CS −1CT

)−1
C. Therefore, we can solve for y:

y =
(
CS −1CT

)†
CS −1(Mλ − K)x .

We remark then that row rank deficiency in the constraint matrix C does not prevent us from
continuing, though it does mean that the Lagrange multipliers y corresponding to a solution
(x, λ) are not unique.

Substituting this value of y into the original equation yields the equations

PKx = PMxλ,

Cx = 0 ,

where P = I−ĈS −1 and Ĉ = CT
(
CS −1CT

)†
C. Note that PT z = z for any z satisfying Cz = 0,

in particular our solution x. Then we may write

PKPT x = PMPT xλ . (4.1)

This is a singular matrix pencil, e.g. both matrices share a null space. As a result, it defines
an ill-posed eigenvalue problem. However, the singularity is not prohibitive. We now ex-
plain how to generate a symmetric positive definite matrix pencil which defines a well-posed
eigenvalue problem that we can solve in a stable manner.

Note that for solutions (x, λ) satisfying Cx = 0, we have Ĉx = 0. Then we note the
following progression:

(PKPT + ρĈ)x = PKPT x = PMPT xλ = (PMPT + Ĉ)xλ . (4.2)

For a positive ρ, shifting in this manner produces a symmetric/positive definite eigenvalue
problem. The finite eigenvalues from (4.1) are eigenvalues of (4.2), and their associated
eigenvectors satisfy the problem constraint. The remaining eigenvalues of (4.2) take the value
ρ, which can be chosen larger than the eigenvalues of interest.

We now discuss approaches for solving the new eigenvalue problem:

(PKPT + ρĈ)x = (PMPT + Ĉ)xλ .

A Krylov subspace solver requires a spectral transformation, which requires that we solve
(for w) linear systems of the form

(PKPT + ρĈ)w = (PMPT + Ĉ)z .

The solution to this system is not immediately apparent.

72 Constrained Eigenvalue Problems

Other alternatives include preconditioned residual-based solvers, such as Block Davidson
or LOBPCG (both available in Anasazi). These solvers as a fundamental step precondition
the eigenvector residual. Consider some preconditioner N ≈ K. Then the preconditioned
residual for a Ritz pair (x, λ) is

N−1r = N−1P(K − Mλ)PT x + N−1(ρ − 1)Ĉx .

The result of this computation depends on the choice of S from above. One choice
immediately presents itself: S = N. In this case, we have two useful identities: P = I − ĈN−1

and N−1P = PT N−1. This means that N−1r can be rewritten as

N−1r = PT N−1(K − Mλ)PT x + (ρ − 1)(I − PT)x .

Note in particular that for x already satisfying PT x = x (i.e., Cx = 0), the second term in
this equation becomes zero and N−1r = PT N−1(K − Mλ)x, which also satisfies PT N−1r =
N−1r. This is a useful property for the Block Davidson solver. This is because the successive
subspaces (from which a solution is extracted) are expanded by N−1r. As a result, if the
search subspace is already orthogonal to CT , then it will remain so after the expansion by
N−1r. A similar recurrence applies to LOBPCG as well.

REFERENCES

[1] P. A, U. L. H, R. B. L,  R. S. T, A comparison of eigensolvers for large-
scale 3D modal analysis using AMG-preconditioned iterative methods, International Journal for Numerical
Methods in Engineering, 64 (2005), pp. 204–236.

[2] M. B, K. P, G. R, T. W, D. D, K. A,  J. P, Salinas: A scalable software for
high-performance structural and solid mechanics simulation.

[3] G. H. G  C. F. V L, Matrix Computations, third edition, Johns Hopkins Studies in the Mathemat-
ical Sciences, Johns Hopkins University Press, 1996.

[4] A. K, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

[5] R. L, D. S,  C. Y, Arpack users’ guide: Solution of large scale eigenvalue problems with
implicitly restarted Arnoldi methods, 1997.

[6] K. J. M  D. C. S, PARPACK: An efficient portable large scale eigenvalue package for
distributed memory parallel architectures, Lecture Notes in Computer Science, 1184 (1996), pp. 478–
486.

M.L. Parks and S.S. Collis 73

Discrete Mathematics and Informatics

Discrete mathematics is the study of fundamentally discrete mathematical structures.
This particular branch of mathematics is strongly applicable to applications arising in the
computing sciences, due to the discrete nature of computation. Correspondingly, the field of
informatics includes processing and reasoning about collected information or data, and can
be considered as encompassing the whole of computer science and related fields. The articles
in this section make contributions in these broad areas.

Wolf and Boman explore new partitioning techniques to improve scalability of parallel,
sparse matrix-vector multiplication, a core computational kernel for large-scale simulations.
Selee et al. consider the problem of how to group information when multiple similarities are
known. To this end they develop a new tensor decomposition they call the Implicit Slice
Canonical Decomposition (IMSCAND) and demonstrate the applicability of IMSCAND on
a set of journal articles with multiple similarities. Finally, Benavides et al. introduce a new
Python package, Pyomo (Python Optimization Modeling Objects). Pyomo provides capabil-
ities similar to those of other algebraic modeling languages (AMLs), which are high-level
programming languages for describing and solving mathematical problems, particularly opti-
mization problems. Pyomo can be used to define abstract problems, create concrete problem
instances, and solve these instances with standard solvers.

M.L. Parks
S.S. Collis

December 6, 2007

74 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2007 75

PARTITIONING FOR PARALLEL SPARSE MATRIX-VECTOR
MULTIPLICATION

MICHAEL M. WOLF∗ AND ERIK G. BOMAN†

Abstract. Parallel sparse matrix-vector multiplication is ubiquitous throughout large-scale scientific simula-
tions. As simulations grow to tens of thousands of processors and higher, the communication volume will become
increasingly significant. In order to mitigate this growing communication volume, we must utilize more complicated
partitioning techniques than traditionally necessary. In this paper, we will outline previous partitioning methods and
introduce a new method we have developed.

1. Introduction.

1.1. Motivation. Parallel computing is essential to modern computational science. An
important motivating factor for parallel computing is large-scale scientific simulations. These
simulations are often too large to fit in memory on one computer and take too long to com-
pute in serial. Thus, the computation and often the data must be distributed across multiple
processors so that the computational scientist can have their simulation complete in a timely
manner. For matrix-vector multiplication, this means distributing both the matrices and the
vectors across the processors. Figure 1.1 shows a possible distribution of both vectors and
matrix nonzeros for the matrix-vector multiplication operation y = Ax with the different col-
ors representing different partitions. For this paper, we will assume that the input and output
vectors are distributed identically (generally a good assumption) and that the partition of each
vector entry (xi and yi) is the same as the partition of the corresponding diagonal entry in the
matrix, ai,i. Figure 1.2 shows a different representation of the same parallel matrix-vector
product, which is useful in visualizing the communication volume for this operation. Since
for partitioning the actual value of a nonzero is not important (only the fact that the element is
a nonzero is important), we have replaced the nonzero values of the matrix with X’s. Again,
the color of the X’s corresponds to a particular partition. We have also replaced the vectors
with segmented bars where the entries are colored by partition. We align the y color bar to
the left of the matrix so that each entry in the y color bar is directly to the left of the ma-
trix row whose inner-product calculates this entry. We align each x color bar entry directly
above the matrix column entries with which they are multiplied in the matrix-vector product.
This alignment makes it easier to visualize the communication needed for the matrix-vector
product as described in subsection 1.2.

1
5
0

0
0
4

0
0

6
1

8
0
0

0
0
0

0
9
1
2
0
0
0
0

0
0
7
1
0
0
6
0

0
5
0
0
1
3
0
0

0
0
0
0
8
1
9
0

0
0
0
0
0
3
1
2

0
0
0
7
0
0
4
1

y1
y2
y3
y4
y5
y6
y7
y8

x1
x2
x3
x4
x5
x6
x7
x8

F. 1.1. Distribution of matrices and vectors for parallel sparse matrix-vector multiplication.

∗University of Illinois at Urbana-Champaign, mmwolf@uiuc.edu
†Sandia National Laboratories, egboman@sandia.gov

76 Partitioning Sparse Matrices

F. 1.2. Alternative way of visualizing parallel sparse matrix-vector multiplication.

1.2. Parallel Matrix-Vector Multiplication. In general, there are four main stages of
parallel matrix-vector multiplication as shown in Figure 1.3 and summarized in the following
enumeration:

1. Expand: Send entries x j to processes with a nonzero ai, j for some row i.
2. Local Multiply-add: yi := yi + ai, jx j

3. Fold: Send partial inner-product (y values) to relevant processes.
4. Sum: Sum up the partial y values.

In the first stage, elements in vector x are communicated to remote processes. In particular,
x j is communicated to a remote process if that process owns a nonzero in the jth column
of matrix A as shown in Figure 1.3(a). From this diagram, we can easily determine that
communication is needed if there is a nonzero in a column of a different color than the color
of the x element for that column. For example, since x1 is owned by the red process but
a3,1 is a blue process nonzero, x1 must be communicated to the blue process. After this first
communication stage, the processes perform local partial inner-product operations for the
nonzeros that they own (Figure 1.3(b)). Next, each process communicates the partial inner-
product results to the processes which own the corresponding y entry. From the diagram in
Figure 1.3(c), we can easily determine that communication is needed if a nonzero in row i is a
different color than yi. For example, since y4 is owned by the blue process but a4,8 is owned by
the green process, the local partial inner-product ŷ4 := a4,8x8 must be communicated from the
green process to the blue process. Finally, the processes accumulate the partial inner-products
to form the vector entries of y (Figure 1.3(d)).

When partitioning for parallel matrix-vector multiplication, we are interested in reduc-
ing the actual run-time of the algorithm. We could write an objective function to minimize
the run-time, taking into consideration computation, communication latency, communication
volume, idle time, etc. However, this would would be a very difficult optimization prob-
lem with so many contributing variables to solve in a reasonable amount of time. Thus, in
practice, we settle for minimizing the total communication volume while keeping the com-
putation balanced across processes. When partitioning to minimize this objective, we can
use either one-dimensional partitioning (section 2) or two-dimensional partitioning (section
3). We can also model the communication in several different ways, using graphs, bipartite
graphs, or hypergraphs, for example. In the following sections, we discuss one-dimensional
and two-dimensional methods using graphs and hypergraphs.

M.M. Wolf and E.G. Boman 77

(a)

(c)

(b)

(d)

F. 1.3. Stages of parallel sparse matrix-vector multiplication.

2. One-Dimensional Partitioning. One-dimensional partitioning can either be one-
dimensional row partitioning or one-dimensional column partitioning. In one-dimensional
row partitioning, each process is assigned all the nonzeros for some set of rows (Figure
2.1(a)). Similarly, in one-dimensional column partitioning, each process is assigned all the
nonzeros for some set of columns (Figure 2.1(b)). A parallel matrix-vector multiplication
operation resulting from one-dimensional partitioning only has one communication stage. In
particular, for an operation resulting from one-dimensional row partitioning, the partial inner-
products need not be communicated since a process that owns a particular row also owns the
corresponding y vector entry. Likewise, for an operation resulting from one-dimensional
column partitioning, the x vector entries do not need to be communicated since a process
that owns a particular nonzero also owns the corresponding x entry by which it is multiplied
during the local inner-product stage.

2.1. One-Dimensional Graph Model. One frequently utilized model of communica-
tion is the one-dimensional graph model (as shown in Figure 2.2) [9, 10]. For this model, we
assume the matrix is symmetric. Each matrix row or column (depending on whether row or
column partitioning is requested) is represented by a vertex in the graph. The off-diagonal
nonzeros are represented by edges between the two vertices corresponding to the row and col-
umn of the nonzero. For instance, in Figure 2.2, element a1,8 is a nonzero, and thus vertices 1
and 8 are connected by an edge. After constructing the graph, we partition the vertices into k
equal sets (k = 2 for Figure 2.2) such that the number of cut edges is minimized. A cut edge
is an edge that connects two vertices of different partitions. The graph model estimates the
communication volume to be twice the number of cut edges. This partitioning of the graph
model is NP-hard to solve optimally. However, there are many heuristic algorithms that can
solve this problem close to optimally in polynomial time [9, 10].

However, there are a couple of drawbacks to using this traditional graph model. The

78 Partitioning Sparse Matrices

(a) Row partitioning. (b) Column partitioning.

F. 2.1. One-dimensional partitioning.

3

4
5

6

1
2

7

1 873 542 6
1

3
2

8
7
6
5
4

8

F. 2.2. One-dimensional graph partitioning.

graph model requires the matrix to have a symmetric nonzero structure. A more severe prob-
lem is that using twice the edge cut as an metric for the communication volume is not accurate.
In particular, we see in the Figure 2.2 graph that the communication volume is over-counted.
For this partitioning, there are three cut edges (highlighted in magenta): {1,2}, {1,8}, and {7,8}.
Using the metric, we get a communication volume of 6. However, the cut edges involving
vertices 1 and 8 are over-counted by this metric since the vertices only should be commu-
nicated once, and the true communication volume for this matrix-vector product should be
4. The over-counting in the graph model can be remedied by counting boundary vertices in-
stead. However, most people that use graph partitioning do not use this more correct boundary
vertex version but use the traditional edge cut version. For some applications, e.g. structured
meshes, the difference between the edge cut and bounding vertices is small, and thus the error
is also small.

2.2. One-Dimensional Hypergraph Model. A model that addresses the shortcomings
of the one-dimensional graph model (using the edge cut metric) is the one-dimensional hyper-
graph model (shown in Figure 2.3 for row partitioning). Unlike the graph model, the hyper-
graph model allows for matrices with unsymmetric nonzero patterns. For the one-dimensional
row hypergraph partitioning, the rows are represented by vertices in the hypergraph (for one-
dimensional column partitioning, columns are represented by vertices). Each column is rep-

M.M. Wolf and E.G. Boman 79

resented by a hyperedge in the hypergraph. For instance, in Figure 2.3, the third column of
the matrix has nonzeros in rows 2, 3, and 4. Thus, the corresponding hyperedge in the hyper-
graph contains vertices 2, 3, and 4. A typical representation of the hypergraph model is shown
in the right diagram of Figure 2.3. However, we can also visualize the hypergraph directly on
the matrix stencil (left diagram of Figure 2.3), with the hyperedges drawn on the matrix rows
or columns (columns for the row partitioning shown in the figure). For the one-dimensional
row partitioning, each nonzero in a row corresponds to the same vertex in the hypergraph,
and thus we can obtain the right diagram by superimposing the matrix columns for the left
diagram and rearranging the X’s into the same positions as the vertices on the right. After
constructing the hypergraph, we partition the vertices into k equal sets (k = 2 for Figure 2.3)
such that a hyperedge cut metric is minimized. The cut metric is obtained by summing over
all hyperedges the number of different remote processes (those that do not own the diagonal
entry) owning vertices for a given hyperedge. Aykanat and Catalyurek proved that this hy-
peredge cut metric is equivalent to the total communication volume [2]. For the hypergraph
shown in Figure 2.3, there are two cut hyperedges (the column 3 blue and column 5 cyan
shaded hyperedges) and thus a communication volume of two for the resulting matrix-vector
product, which is accurate for this partitioning of the matrix. As with the graph model, parti-
tioning of the hypergraph is NP-hard to solve optimally but there are heuristic algorithms that
can solve this problem close to optimally in polynomial time [2, 7].

h1 h3 h5h4h2
v1

v3

v2

v5

v4
2

1

4

5

3

F. 2.3. One-dimensional hypergraph partitioning.

2.3. Inadequacy of One-Dimensional Partitioning. One-dimensional sparse matrix
partitioning is sufficient for many problems, and most applications use matrices distributed
in a one-dimensional manner. However, for some problems one-dimensional partitioning is
potentially disastrous in terms of the communication volume. The “arrowhead” matrix shown
in Figure 2.4 is an example for which one-dimensional partitioning is inadequate. For the
bisection (k = 2) case shown in the figure, any load-balanced one-dimensional partitioning
will yield a communication volume of approximately 3

4 n for the matrix-vector product. As we
will see in the following sections, this is far from a minimum communication volume for this
problem and it is unacceptable for the communication volume to scale as n for this matrix.
Thus, we need more flexible partitioning than traditional one-dimensional partitioning.

3. Two-Dimensional Partitioning. Two-dimensional partitioning is a more flexible al-
ternative to one-dimensional partitioning, in which there is no specific partition assigned to a
given row or column. Thus, we have to specify the partition for particular sets of nonzeros.
Two-dimensional Cartesian partitioning is a simple method of two-dimensional partitioning
in which a partition is assigned to the nonzeros which lie in both a particular set of rows and

80 Partitioning Sparse Matrices

F. 2.4. Arrowhead matrix partitioned for two processes.

a particular set of columns. This partitioning is obtained by partitioning the matrix into
√

k
processes in one dimension, say row-wise, and then partitioning each of the row partitions
into

√
k column partitions for a total of k partitions. Figure 3.1 shows a block version of this

method where the partitions consist of nonzeros in a set of continuous rows and columns.
Although Cartesian block partitioning is a good method for dense matrices, it suffers from
potential poor load-balancing for most sparse matrices. Although slight improvements can
be made by using one-dimensional hypergraph partitioning in both directions to obtain a
more scattered Cartesian partitioning [4], the method still in general suffers from poor load-
balancing.

F. 3.1. Two-dimensional Cartesian partitioning.

3.1. Mondriaan. A slightly more general and flexible two-dimensional partitioning
method is the Mondriaan method [11]. Mondriaan uses recursive bisection such that at each
level of the algorithm the partitions from the previous level can be partitioned by either rows
or columns. As shown in Figure 3.2, this yields a rectangular tiled partitioning where each
partition tile can have varied dimensions. In Figure 3.2, we see that the first level partitioning
was made row-wise (division shown by the cyan line). The second level partitioning was
made column-wise for the top portion but row-wise for the lower partition (orange lines). As
with the Cartesian method, the partitions need not consist of consecutive rows/columns but

M.M. Wolf and E.G. Boman 81

were shown this way for easier illustration.

F. 3.2. Two-dimensional Mondriaan partitioning.

3.2. Fine-grain hypergraph. The most flexible partitioning method is the fine-grain
hypergraph partitioning method in which each nonzero can be partitioned separately from the
others [3]. In the fine-grain hypergraph model, each nonzero is assigned a partition separately
and thus is represented by a vertex in the hypergraph. Each row is represented by a hyperedge
in the hypergraph (magenta hyperedges in Figure 3.3). Likewise, each column is represented
by a hyperedge in the hypergraph (orange hyperedges in Figure 3.3). Thus, for a n×n matrix,
the fine-graph hypergraph model has 2n hyperedges.

h7

h8

h16

h1

h2

h3

h4

h5

h6

h9 h10 h11 h12 h13 h14 h15

F. 3.3. Fine-grain hypegraph partitioning of arrowhead matrix with k = 2 partitions. Cut hyperedges are
shaded. The hyperedge cut and thus the communication volume are 3.

As with the one-dimensional hypergraph model, we partition the vertices into k equal
sets (k = 2 in Figure 3.3) such that the hypergraph cut metric described in subsection 2.2
is minimized. Again, the communication volume is equivalent to this hyperedge cut metric.
Catalyurek and Aykanat proved that this fine-grain hypergraph model yields a minimum vol-
ume partitioning when optimally solved [3]. In Figure 3.3, we see the fine-graph hypergraph
partitioning of the 8× 8 arrowhead matrix. The resulting communication volume is shown to
be 3, which is a significant improvement over the communication volume of 6 from the op-
timal one-dimensional partitioning. As with the one-dimensional hypergraph model, solving

82 Partitioning Sparse Matrices

the fine-grain hypergraph model optimally is NP-hard but there are heuristics that can solve
it close to optimally in polynomial time. Unfortunately, the resulting fine-grain hypergraph
problem is a larger NP-hard problem and thus, may be too expensive to solve quickly for
large matrices.

4. Two-Dimensional Corner Partitioning.

4.1. Motivation. Loosening the load-balancing restriction slightly so that the number of
nonzeros are allowed to differ slightly between partitions, we obtain the fine-grain hypergraph
partitioning (k = 2) shown in Figure 4.1 for the 8 × 8 arrowhead matrix. This partitioning
will result in a communication volume of 2, which is the minimum cut/volume possible for
any non-trivial partitioning. An examination of this minimum cut partitioning suggests a
new partitioning method. We see that each partition consists of a set of ”“corners” (more
easily seen in Figure 4.2), which are basically one-dimensional partitions reflected across the
diagonal. Using these ”“corners”, the hope is that we could reproduce an optimal fine-grain
partitioning using a less costly one-dimensional partitioning method for certain matrices.

h7

h8

h16

h1

h2

h3

h4

h5

h6

h9 h10 h11 h12 h13 h14 h15

F. 4.1. Fine-grain hypergraph partitioning (k = 2) with slight imbalance yielding minimum hyperedge cut
for non-trivial partitioning.

F. 4.2. “Corners” in Figure 4.1 partitioning.

M.M. Wolf and E.G. Boman 83

4.2. Method. We show an illustration of the corner partitioning method in Figure 4.3
for the previously partitioned 8 × 8 arrowhead matrix. As shown in the diagrams of Figure
4.3(a,b), we start with a one-dimensional column partitioning of the lower triangular part of
the matrix. We then reflect this one-dimensional partitioning across the diagonal such that
row i in the upper triangular part of the matrix is assigned to the same partition as column i in
the lower triangular part of the matrix (Figure 4.3(c)). For this arrowhead matrix, we see in
Figure 4.3(d) that this corner partitioning method has produced the same optimal partitioning
as obtained by the fine-grain hypergraph method (Figure 4.1) at a reduced computational
cost. This indicates that the corner method can be an effective two-dimensional partitioning
method for some matrices.

(a) (b)

(c) (d)

F. 4.3. Corner partitioning method.

5. Results. We implemented one-dimensional column, two-dimensional corner, and
two-dimensional fine-grain partitioning by using the hypergraph partitioning algorithm from
the Zoltan library [1, 6, 7]. We studied the partitioning of three different matrices: an ar-
rowhead matrix and two “real world” matrices from the literature. We also obtain results for
two-dimensional Mondriaan partitioning method from the literature [11] and by running the
Mondriaan code [12]. We compare the resulting communication volumes obtained by these
four methods for the three test matrices.

The arrowhead matrix we studied had n = 40000 rows and columns. We summarize
the resulting communication volumes for the methods in Table 5.1. As expected, the one-
dimensional column method does a very poor job of partitioning the arrowhead matrix. The
resulting communication volume is approximately 3

4 n for the bisection case and approxi-
mately n for the larger number of partitions. The two-dimensional Mondriaan method also
partitioned the arrowhead matrix poorly. This is not too surprising when we consider that
the first cut of this multi-level algorithm is one-dimensional bisection. After this first cut, the
communication will only increase with additional cuts. Thus, although Mondriaan is slightly
better than one-dimensional column partitioning for the larger numbers of partitions, the first
cut has doomed this method to yield a high communication volume partitioning. The corner

84 Partitioning Sparse Matrices

method and fine-grain hypergraph method both yield significant better results than the other
two methods. They yield partitionings with minimum communication volume (for non-trivial
partitioning), 2(p−1), which is much improved over the order n volumes of the other methods
since usually p � n. Thus, the corner method performed well for this matrix, yielding the
same quality partitioning as the fine-grain hypergraph model at a cheaper cost.

T 5.1
Partitioning results for 40000 × 40000 arrowhead matrix for four methods: one-dimensional column, two-

dimensional Mondriaan, two-dimensional corner, and fine-grain hypergraph partitioning. Each entry gives the
communication volume resulting from for a method’s partitioning for k = 2, 4, 16, 64 partitions. The starred entries
designate a minimum volume for a non-trivial partitioning.

k 1-D Column Mondriaan Corner Fine-grain
2 29101 29102 2* 2*
4 40001 29778 6* 6*
16 40012 37459 30* 30*
64 40048 39424 126* 126*

Since we possessed Mondriaan results from the literature [11] for finan512 and bc-
sstk30, we used these matrices to compare the partitioning methods. The finan512 matrix,
which we obtained from the University of Florida sparse matrix collection [5], resulted from
portfolio optimization. The nonzero structure is shown in Figure 5.1(a). The bcsstk30 ma-
trix is from the Harwell-Boeing collection and arose from a structural engineering eigenvalue
problem [8]. The nonzero structure for bcsstk30 is shown in Figure 5.1(b).

(a) finan512 matrix. (b) bcsstk30 matrix.

F. 5.1. Nonzero patterns of test matrices.

As with the arrowhead matrix, we partitioned these two matrices using the one-
dimensional, two-dimensional corner, and two-dimensional fine-grain hypergraph methods
for 2, 4, 16, and 64 partitions. We obtained results for the two-dimensional Mondriaan
method from the literature [11]. Figure 5.2 shows the results for the finan512 matrix. Similar
to the arrowhead matrix, the fine-grain and corner methods yield significantly more opti-
mal partitionings than the one-dimensional and Mondriaan methods for the higher number of
partitions. The corner method actually produce slightly lower communication volume parti-
tionings than the fine-grain hypergraph method at a reduced cost. Figure 5.3 plots the com-

M.M. Wolf and E.G. Boman 85

munication volume resulting from the partitioning methods for the bcsstk30 matrix. Again,
we see that the corner method yields the partitioning of the lowest communication volume
for this problem, especially for the higher number of partitions. Interestingly, the fine-grain
hypergraph method yields the highest communication volume partitioning. This may be due
to the heuristic partitioning algorithms having difficulty optimizing this larger hypergraph
problem.

F. 5.2. finan512 matrix: communication volume for four partitioning methods for k = 2, 4, 16, 64 partitions.

1-D Column

2-D Mondriaan
2-D Corner
2-D Fine-grain

2 4 16 64

35000

30000

25000

20000

15000

10000

5000

F. 5.3. bcsstk30: communication volume for four partitioning methods for k = 2, 4, 16, 64 partitions.

6. Summary/Conclusions. We have outlined several methods of partitioning matri-
ces for matrix-vector multiplication, including both one-dimensional and two-dimensional
partitioning methods. In subsection 2.3, we described a particular matrix for which one-
dimensional partitioning yielded poor partitioning results and argued that a more flexible

86 Partitioning Sparse Matrices

two-dimensional partitioning scheme was necessary. We introduced a new method of two-
dimensional matrix partitioning, the corner method. As hoped, we showed that this corner
method could produce partitionings of similar quality (better for some matrices) to the fine-
grain hypergraph method at a reduced cost.

In the future, we wish to gain a better intuition for the corner partitioning method. It is
clear that it produces an optimal (non-trivial) partitioning for the arrowhead matrix and that it
produces very good partitionings for both the finan512 and the bcsstk30 matrices. However,
we would like to have a better intuition of for what matrices the corner method produces
good partitionings. In more recent work, we have been studying symmetric reordering of the
matrix rows and columns for the corner partitioning method. Reordering is unnecessary for
one-dimensional partitioning schemes since it yields the same graph and hypergraph models
(although in practice these may differ when the problem is solved less than optimally using
heuristics). However, the corner symmetric partitioning method is very dependent on the
row/column ordering. Thus, reordering can potentially greatly decrease the communication
volume for a corner partitioning. We would like to be able to find the optimal ordering/parti-
tioning for the corner method and hope that this will extend the utility of the method so that
it will be useful for partitioning a wider variety of matrices.

Acknowledgments. We thank Bruce Hendrickson for his recent contributions on the
symmetric row/column reordering for the corner method. We would also thank the Zoltan
development team since we used Zoltan for most of our partitioning. This research was
performed as part of the CSCAPES Institute, funded by the Office of Science of the U.S. De-
partment of Energy under the Scientific Discovery through Advanced Computing (SciDAC)
program.

REFERENCES

[1] E. B, K. D, L. A. F, R. H, B. H, V. L, C. V, U. C,
D. B, W. M, Zoltan home page. http://www.cs.sandia.gov/Zoltan, 1999.

[2] Ü. Ç̈  C. A, Hypergraph-partitioning-based decomposition for parallel sparse-matrix
vector multiplication, IEEE Trans. Parallel Dist. Systems, 10 (1999), pp. 673–693.

[3] , A fine-grain hypergraph model for 2d decomposition of sparse matrices, in Proc. IPDPS 8th Int’l
Workshop on Solving Irregularly Structured Problems in Parallel (Irregular 2001), April 2001.

[4] , A hypergraph-partitioning approach for coarse-grain decomposition, in Proc. Supercomputing 2001,
ACM, 2001.

[5] T. A. D. The University of Florida Sparse Matrix Collection, 1994. http://www.cise.ufl.edu/
research/sparse/matrices/.

[6] K. D, E. B, R. H, B. H,  C. V, Zoltan data management services for
parallel dynamic applications, Computing in Science and Engineering, 4 (2002), pp. 90–97.

[7] K. D. D, E. G. B, R. T. H, R. H. B,  U. V. C, Parallel hypergraph
partitioning for scientific computing, IEEE, 2006.

[8] I. S. D, R. G. G,  J. G. L, Sparse matrix test problems, ACM Trans. Mathematical Software,
15 (1989), pp. 1–14.

[9] G. K  V. K, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM
J. Scientific Computing, 20 (1998), pp. 359–392.

[10] R. L  B. H, An empirical study of static load balancing algorithms, in Proc. Scalable
High Perf. Comput. Conf., IEEE, May 1994, pp. 682–685.

[11] B. V  R. B, A two-dimensional data driven distribution method for parallel sparse
matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.

[12] B. V  R. H. B, Mondriaan software version 1.0.2, 2005. http://www.math.uu.nl/
people/bisseling/Mondriaan/mondriaan.html.

CSRI Summer Proceedings 2007 87

EXTRACTING CLUSTERS FROM LARGE DATASETS WITH MULTIPLE
SIMILARITY MEASURES USING IMSCAND

TERESA M. SELEE∗, TAMARA G. KOLDA†, W. PHILIP KEGELMEYER‡, AND JOSHUA D. GRIFFIN§

Abstract. We consider the problem of how to group information when multiple similarities are known. For
a group of people, we may know their education, geographic location and family connections and want to cluster
the people by treating all three of these similarities simultaneously. Our approach is to store each similarity as a
slice in a tensor. The similarity measures are generated by comparing features. Generally, the object similarity
matrix is dense. However it can be stored implicitly as the product of a sparse matrix, representing the object-feature
matrix, and its transpose. For this new type of tensor where dense slices are stored implicitly, we have created a new
decomposition called Implicit Slice Canonical Decomposition (IMSCAND). Our decomposition is equivalent to the
tensor CANDECOMP/PARAFAC decomposition, which is a higher-order analogue of the matrix Singular Value
decomposition (SVD) and Principal Component Analysis (PCA). From IMSCAND we obtain compilation feature
vectors which are clustered using k-means. We demonstrate the applicability of IMSCAND on a set of journal
articles with multiple similarities.

1. Introduction. Datasets naturally have mulitple similarities. For a group of people,
we might know their age, education, geographic location, and social and family connections.
For a set of published papers, we know the authors, citations, and terms in the abstract, title,
and keywords. Even for a computer hard drive, we know the names of the files, their saved
location, their time stamp, and their contents. For each of these examples, if we wanted to
find a way to cluster the people, documents, or computer files, our approach is to treat all the
similarities concurrently.

For each similarity, a similarity matrix is formed, with objects (people, documents, files,
etc.) as both the rows and columns. Each of the similarity matrices is a slice in a tensor,
and a tensor decomposition is used to assemble the multiple adjacency matrices into a set of
compilation feature vectors. These feature vectors can then be clustered using the k-means
clustering algorithm. This approach was used by Dunlavy et al. [6].

Our approach to this problem is special because of how we form the similarity matrices.
In general, similarity matrices are dense, limiting the number of objects and features because
of the large amount of work required to compute a decomposition for a dense tensor. We
form the dense similarity matrices implicitly by storing only sparse object-feature matrices.
For example, an article-author matrix is a sparse object-feature matrix with documents as
rows and authors as columns of the matrix. Since most articles have just a few authors, we
can see how this is a sparse matrix. Then the adjacency matrix is stored implicitly as the
product of the sparse object-feature matrix and its transpose (a feature-object matrix).

Our new decomposition is called Implicit Slice Canonical Decomposition (IMSCAND)
and does all of its computations on the sparse matrices only. This allows us to treat much
larger problems than if we stored the full similarity matrices. We illustrate the effectiveness
of our decomposition on a set of journal publications from the Society of Industrial and
Applied Mathematics (SIAM). Our long-term goal is to use this approach to cluster files on
computer hard drives.

2. Tensors. In this paper we focus on third-order tensors. These are denoted by boldface
Euler script letters, e.g., X. When we say order, way, or mode we are referring to the number
of dimensions of the tensor. A third-order tensor, X ∈ RI×J×K is illustrated in Figure 2.1.

∗Department of Mathematics, North Carolina State University, tmselee@ncsu.edu
†Sandia National Laboratories, tgkolda@sandia.gov
‡Sandia National Laboratories, wpk@sandia.gov
§Sandia National Laboratories, jdgriffi@sandia.gov

88 Extracting Clusters from Large Datasets

F. 2.1. Third-order tensor X ∈ RI×J×K

Matrices are denoted by boldface capital letters, e.g., A. Vectors are denoted by boldface
lowercase letters, e.g., a. Scalars are denoted by lowercase letters, e.g., a. The ith entry of a
is ai. The ith row of A is ai:, the jth column of A is a: j or sometimes just a j. Finally, the (i, j)
entry of A is ai j.

We have similar notation for tensors. The higher-order analogue of rows and columns are
fibers. A column vector is a mode-1 or column fiber, denoted x: jk. A row vector is a mode-2
or row fiber, denoted xi:k. Vectors in the third dimension are tube fibers, written xi j:. These
are illustrated in Figure 2.2.

F. 2.2. Fibers of a third order tensor X.

We must also discuss the notation for two-dimensional slices. Slices of a tensor are
matrices and can be horizontal, lateral, or frontal. They are denoted as Xi::,X: j: and X::k,
respectively. The notation Xk is also used to denote the kth frontal slice of a tensor. These are
displayed in Figure 2.3.

F. 2.3. Slices of a third order tensor.

In addition, there are tensor symbols we need to define. The symbol ◦ denotes the outer
product of vectors. For example, for a ∈ RI , b ∈ RJ and c ∈ RK , we can form a tensor X

from the outer product, X = a ◦ b ◦ c where xi jk = aib jck for all i = 1, . . . , I, j = 1, . . . , J, and
k = 1, . . . ,K. We define the Hadamard (i.e., elementwise) matrix product using the symbol ∗.
The Khatri-Rao product [18, 22, 2, 24] is a columnwise Kronecker product. For two matrices
A ∈ RI×P and B ∈ RJ×P, the Khatri-Rao product is

A � B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aP ⊗ bP

]
,

where a ⊗ b denotes the matrix Kronecker product.

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 89

For some computations, it is necessary to treat the entire tensor in matrix form. To do
this we go through a process called matricization. We define X(1) to the be the mode-1 matri-
cization of X. This means the mode-1 fibers (the column fibers) are aligned to form a matrix.
Specifically, the mode-1 fibers are mapped to the rows of a matrix, and the modes-2 and -3
fibers are mapped to the columns of the matrix. See Figure 2.4 for an illustration of mode-1
matricization. We also look at X(2) and X(3), the mode-2 (row) and mode-3 (tube) matriciza-

F. 2.4. Example of a mode-1 matricization, X(1). The column fibers are aligned to form a matrix, with the
mode-1 fibers as rows in our matrix, and the modes-2 and -3 fibers as the columns of the matrix.

tions, respectively. The ordering of the grouped modes makes a difference. Although we do
not indicate it explicitly, we assume X(1) = X({1}×{2,3}), X(2) = X({2}×{1,3}), and X(3) = X({3}×{1,2}),
per the notation of [14]. This ordering is not universal; see, e.g., [5, 13].

The tensor norm is defined as the square root of the sum of the squares of all the elements
of a tensor. For X ∈ RI×J×K ,

‖X‖2 =

I∑
i=1

J∑
j=1

K∑
k=1

x2
i jk.

This is the higher-order analogue of the matrix Frobenius norm.
For more information on tensor notation, see [13, 9, 1, 14].

3. Special types of tensors. We will discuss two special types of tensors in this paper:
Kruskal tensors and sp3way tensors.

3.1. Kruskal tensors. Kruskal tensors, named for Kruskal [15, 16], are tensors that are
stored as the sum of R rank-1 tensors. If X ∈ RI×J×K is a Kruskal tensor, it is stored as:

X =

R∑
r=1

ar ◦ br ◦ cr,

where A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R. The notation ar denotes the rth column of a
matrix A. An illustration of this idea is in Figure 3.1. This type of tensor results from a CAN-

F. 3.1. A third-order Kruskal tensor X is written as the sum of R rank-1 tensors.

DECOMP/PARAFAC decomposition [3, 7], described in section 4. We use the shorthand
notation from [14]:

X = JA,B,CK,

90 Extracting Clusters from Large Datasets

though other notation can be used. For instance, Kruskal [15] uses

X = (A,B,C) .

It is also possible to have explicit weights λ ∈ RR. Then

X =

R∑
r=1

λr ar ◦ br ◦ cr, and X = Jλ; A,B,CK.

3.2. A new class of tensors: sp3way tensors. We have created a new class of tensors
that are third-order (3-way) with special structure. For this type of tensor, each slice is dense,
but formed from the product of a sparse matrix and its transpose. Specifically, each (frontal)
slice of X ∈ RN×N×P is written, Xp = YpYT

p for sparse Yp, with p = 1, . . . , P. This is shown
in Figure 3.2.

F. 3.2. An sp3way tensor, in which each slice of the tensor, X, is formed from the product of a sparse matrix
and its transpose, Xp = YpYT

p for sparse Yp, with p = 1, . . . , P.

The motivation for this type of tensor came from wanting to store multiple similarity
matrices simultaneously. Our idea is to view the similarity (object-object) matrices as formed
from the product of an object-feature matrix and its transpose. For the tensor X ∈ RN×N×P

we have N objects and P features. In general, object-feature matrices are sparse. The slices
of our final tensor are object-object matrices which can be dense, and each slice is a different
similarity matrix. When we do computations on sp3way tensors, everything is done on the
sparse matrices directly.

4. CANDECOMP/PARAFAC (CP) and INDSCAL. Canonical Decomposition
(CANDECOMP) [3] and Parallel Factors (PARAFAC) [7] are two different names for the
same tensor decomposition, first published in 1970, and often abbreviated CP so as to give
credit to both names. This decomposition is a higher-order analogue of the matrix Singular
Value Decomposition (SVD) or matrix Principal Component Analysis (PCA). For a gen-
eral third-order tensor, a rank-R CP decomposition approximates a tensor X ∈ RI×J×K by a
Kruskal tensor K. Since X is a 3-way tensor, the Kruskal tensor is written K = JA,B,CK.

The standard algorithm for computing a CP decomposition employs Alternating Least
Squares (ALS) [3]. The CP-ALS algorithm requires two matrices to begin, say A and B. We
then iterate through three steps to compute the matrices C, B, and A which form the Kruskal
tensor. The algorithm proceeds as follows.

1. Holding A and B constant, solve for C:

C = X(3) (B � A)
(
BT B ∗ AT A

)†
.

2. Holding A and C constant, solve for B:

B = X(2) (C � A)
(
CT C ∗ AT A

)†
.

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 91

3. Holding B and C constant, solve for A:

A = X(1) (C � B)
(
CT C ∗ BT B

)†
.

We iterate through the three steps, computing new values for C,B, and A, until the fit of the
Kruskal tensor to the original tensor ceases to improve or we reach our maximum number of
allowed iterations.

4.1. Symmetric CP. In the original paper by Carroll and Chang [3], in addition to in-
troducing the CANDECOMP decomposition of a tensor, they also introduce individual dif-
ferences in scaling (INDSCAL), which is a symmetric CP decomposition. To employ IND-
SCAL, the frontal slices of the tensor X ∈ RN×N×P must be symmetric. The major difference
is that, unlike normal (not necessarily symmetric) CP-ALS iterations, there is no constraint to
make A = B. However, when we have symmetry in the frontal slices (xi jk = x jik for all i, j, k),
we are guaranteed to have A and B equal, or at least related by a diagonal transformation, D,
by the time the algorithm has converged [3]. Specifically,

A = DB

B = D−1A

where D ∈ RN×N is a diagonal matrix with nonzero diagonal elements.
Two alternatives to the CP-ALS algorithm exist to explicitly obtain A = B, even if the

frontal slices of the tensor are not symmetric [3]. The first option is not recommended [3]
since its properties are not well understood. In this option, the third step becomes:

3. Set A = B.
Then, as before, we iterate through steps 1, 2, and 3. A better alternative is to follow the
initially laid out steps until the tolerance is reached. Then set A = B, and solve for C one
final time.

4.2. Uniqueness Conditions for CP. There is a long history on uniqueness conditions
for decompositions, and Stegman, et al. [25] give a good summary. The first uniqueness
results on CP are credited to Jennrich (in the Acknowledgments section by Harshman [7],
1970) and Harshman [8], 1972. The most general sufficient condition for uniqueness is due
to Kruskal [15] in 1977. Specifically, Kruskal defined the k-rank of a matrix, which is the
largest number k such that every subset of k columns of the matrix is linearly independent.
We denote the k-rank of a matrix A as kA. Kruskal’s condition states:

kA + kB + kC ≥ 2R + 2

is sufficient for uniqueness of CP, where X ∈ RI×J×K , written X = JA,B,CK, is rank R.
Some additional uniqueness conditions have been developed more recently. In 2000,

Sidiropoulos and Bro [23] illustrated a short-cut proof for the uniqueness conditions and
generalized the result to n-way tensors (for n > 3). In 2002, ten Berge and Sidiropoulos [26]
proved that Kruskal’s sufficiency condition is also necessary for R = 2 and R = 3, but not
for R > 3, (uniqueness for R = 1 was proved by Harshman [8]). Some alternate uniqueness
conditions are given by Jiang and Sidiropoulos, and De Lathauwer in [12, 4]. These two
references separately examine the case where one of the component matrices is of full column
rank. Each paper assumes three conditions (though not the same conditions). Stegman, et al.
[25], take the same approach as in [4], however [25] should be more accessible since there
are no fourth order tensors and the only requirement is basic linear algebra. In addition,
Stegman et al. [25] state distinct general uniqueness conditions for CP and INDSCAL. For

92 Extracting Clusters from Large Datasets

INDSCAL, stricter uniqueness conditions in terms of R are obtained because the model has
less parameters. The conditions for CP are related to those from [12, 4].

The major idea from Stegman, et al. [25] is that we almost surely have uniqueness for the
CP and INDSCAL decompositions when A and B are randomly sampled from a continuous
distribution and C has full rank. Further, in a majority of situations, the CP and INDSCAL
algorithms can be thought of as randomly sampled from a continuous distribution. Thus, the
uniqueness conditions should, but do not always, apply.

5. Implicit Slice Canonical Decomposition (IMSCAND). The motivation for a new
decomposition comes from the new sp3way tensors, which allow us to work with a dense ten-
sor, but only requires us to store sparse matrices. We call this new decomposition IMSCAND
for Implicit Slice Canonical Decomposition. This decomposition gives a canonical decom-
position of a tensor whose slices are formed implicitly as the product of a sparse matrix and
its transpose.

Both CP and IMSCAND produce the same decomposition of a tensor into a Kruskal
tensor using the same number of iterations. The decompositions have a major difference
however. IMSCAND stores sparse matrices, Yi, which are implicitly multiplied by their
transpose to form the frontal slices of the tensor. Specifically, the frontal slices of X ∈ RN×N×P

are

Xp = YpYT
p for p = 1, . . . , P.

All computations are done on the sparse matrices directly. CP, on the other hand, stores fully
formed slices, which can be dense. Because all the computations are done for sparse matrices,
IMSCAND is capable of handling much larger problems than CP in less time.

The algorithm for computing IMSCAND differs from the CP-ALS algorithm at three
main points. The difference occurs in the calculations of X(3) (B � A), X(2) (C � A), and
X(1) (C � B). The CP-ALS algorithm follows:

1. Holding A and B constant, solve for

C = Ĉ
(
BT B ∗ AT A

)†
, with Ĉ = X(3) (B � A) .

2. Holding A and C constant, solve for

B = B̂
(
CT C ∗ AT A

)†
, with B̂ = X(2) (C � A) .

3. Holding B and C constant, solve for

A = Â
(
CT C ∗ BT B

)†
with Â = X(1) (C � B) .

5.1. Computing the product of a tensor and 2 vectors in 2 modes. The entire point
of the IMSCAND decomposition is to not form any of the Xi directly. Thus we have different
ways to compute Ĉ, B̂ and Â. These are all computed using the sparse Yi object-feature
matrices directly.

We compute Ĉ ∈ RP×R elementwise using A and B. Define br as the rth column of B,
and ar as the rth column of A. Then the (p, r) element of Ĉ is

ĉpr =
(
YT

p br

)T (
YT

p ar

)
, for p = 1, . . . , P and r = 1, . . . ,R.

Both P and R are relatively small.

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 93

The values for B̂ and Â are computed with the same formula. Unlike Ĉ which is com-
puted elementwise, these are both computed columnwise. We assume there are P different
features and thus P slices in our tensor. Then, using C, A, and notation from Ĉ,

b̂r =

P∑
p=1

cpr

[
Yp

(
YT

p ar

)]
.

And using B and C,

âr =

P∑
p=1

cpr

[
Yp

(
YT

p br

)]
.

6. Numerical Results. We have analyzed both real and simulated data. Our main goal
is to gain intuition for the optimal choice of the IMSCAND rank and to increase our under-
standing of the k-means clustering algorithm.

Our data sets are too large and dense for previous tensor decompositions. Thus we have
established the new IMSCAND decomposition that exploits the structure of the data to make
the necessary computations possible. Specifically, instead of storing the slices, which are
dense object-object similarity matrices, we instead store the sparse object-feature matrices
which are multiplied by their transpose to form the slices. From the IMSCAND decompo-
sition, we obtain matrices A, B and C. We start with symmetric data so that our output has
the property A ≈ B (we only get equality when CP converges). This is important, since the
rows of both of these matrices contain feature vectors, which are a compilation of all of the
different similarities. We want the same feature vectors since k−means clustering is used on
these vectors to obtain a clustering of our data. We use the matrix A to obtain our feature
vectors.

6.1. Randomly Generated Data. Our simulated data was created to produce an sp3way
tensor with pre-determined clusters. Specifically, the user determines the number of nodes,
number of different similarities (= number of frontal slices), number of clusters, number of
objects in each cluster, number of features in each cluster for each different type of feature,
and the probabilities that two nodes are in the same cluster or in different clusters for each
type of feature.

For example, consider the arranged 5×5×2 sp3way tensor, X with 3 clusters. The tensor
is formed from object-feature matrices Y1 and Y2, with

Y1 =


∗ 0 0 0
∗ 0 0 0
0 ∗ ∗ 0
0 0 0 ∗

0 0 0 ∗

 Y2 =


∗ 0 0 0 0 0
∗ 0 0 0 0 0
0 ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗

 .
For both of these matrices, the stars are in-cluster values, and the zeros are out-of-cluster
values. The out of cluster values do not have to be zero, and the in-cluster values can be
zero. The code is designed so the the clusters are denser than the non-cluster areas. After
creating the slices, we rearrange the rows to make the clusters less obvious and the algorithm
nontrivial.

Both object-feature matrices illustrate that there are two objects in the first cluster, one in
the second cluster, and two in the third cluster. For the first similarity, Y1, we see that there is
one feature in the first cluster, two features in the second cluster, and one feature in the third

94 Extracting Clusters from Large Datasets

cluster. For the second similarity, Y2 we see that there is one feature in the first cluster, three
features in the second cluster, and two features in the third cluster.

As an numerical example, we have generated an sp3way tensor X ∈ R1000×1000×6 with 8
clusters. The sizes for Yi range for the number of features goes from 678 columns to 21342
columns. The number of objects per cluster ranges from 76 to 195, and the number of features
per cluster ranges from 8% to 18% of the total number of features for that similarity. The in-
cluster probabilities range from 9% to 37%, and the out-of-cluster probabilities range from
0.4% to 21%.

We considered many outputs in hopes that something would be a good indicator of an
acceptable choice for the IMSCAND rank. The fit value from IMSCAND does not indicate
the correct number of clusters, or the number of clusters requested from k-means. We also
plotted 2 values from the k-means algorithm. The first graph in Figure 6.1(a) is the total sum
of the distance between each point and its centroid. The second graph in Figure 6.1(b) is the
same sum of distances, only we divide by the rank of IMSCAND or number of dimensions.
The second graph is essentially a normalization of the first graph on the number of dimen-
sions. For each graph, we computed multiple IMSCAND decompositions with ranks ranging
from 1 to 20. We did three separate k-means clusterings, asking for the correct number of
clusters (8), more (12), and less (5). In all of these, we can see a jump in the graph at the
k-means clustering value, but not at the actual number of clusters.

(a) Unnormalized Sums (b) Normalized Sums

F. 6.1. Both graphs look at the total sum of the distances from each points to its k-means centroid. The
normalized sums are divided by the number of dimensions (which also corresponds to the rank of IMSCAND.

6.2. The SIAM Journal Data. The data set we are using with IMSCAND is a set of ap-
proximately 4700 articles from eleven Society of Industrial and Applied Mathematics (SIAM)
journals and SIAM proceedings (SIAM PROC S) for a five-year period from 1999 to 2004.
The names of the publications used throughout this paper are the ISI abbreviations1 for the
journals. We will use the terms article and document interchangeably.

There are both explicit links and implicit links built in to the journal data. An explicit link
exists when one paper cites another paper. The implicit links include connections between
papers through similar authors, title words, abstract words and author-specified keywords.

For this application, we have a tensor with six frontal slices, each of which is formed

1http://www.isiknowledge.com/

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 95

from the product of a sparse article-feature matrix and its transpose. The slices are:

X1 = similarity between words in the abstract
X2 = similarity between names of authors
X3 = similarity between author-specified keywords
X4 = similarity between words in the title
X5 = co-citation information
X6 = co-reference information

We discuss these in more detail. The first four slices are formed as Xi = YiYT
i for i = 1, . . . , 4.

1. Let Y1 be the adjacency matrix formed using information about the abstracts of
the papers. Specifically, we form a document-term matrix where the words in the
abstracts are used to determine the terms. The documents are listed in the rows, and
there is a word bank for the abstracts that is used to form the columns. The word
bank includes all word appearing in abstracts, except for common “stop-list” words.
There are more than 8000 columns in Y1.

2. Let Y2 be the adjacency matrix formed using the documents as rows and the authors
as columns. There are more than 6000 authors associated with the data.

3. Let Y3 be the adjacency matrix formed using the documents as rows and authors-
specified keywords as columns. There are less keywords than documents (just over
3000).

4. Let Y4 be the adjacency matrix formed using the documents as rows and a word
bank of terms from the titles as columns. There are less than 3000 distinct words
that appear in the titles.

5. For X5 (and X6), we need the sparse citation matrix, C. The citation matrix is a
binary matrix defined such that

ci j =

1, if paper i cites paper j
0, otherwise

.

Then the co-citation matrix is defined X5 ≡ CT C with

(X5)i j = the number of papers citing both documents i and j.

6. For X6, as with X5, the sparse citation matrix, C is used (see 5. above). The co-
reference matrix is defined X6 ≡ CCT with

(X6)i j = the number of papers cited by both documents i and j.

Although the original dataset contained 11 journals and SIAM proceedings, after initial
trials we decided to remove two of the journals and SIAM proceedings. We removed the
SIAM Journal on Applied Dynamical Systems because it had only 32 eligible papers in the
five year span. We did not believe there would be enough information from these papers to be
able to identify these documents in the clustering. We also removed SIAM Review and SIAM
proceedings since they had documents spanning a variety of different topics, but lacked one
unifying area by which they might later be clustered together.

Before running IMSCAND and k-means, we first normalized the slices by dividing each
row of each slice by its 2-norm. The first four slices have naturally higher overall weights
(measured by the Frobenius norm), due to more links in the matrices.

To give an example of some results, we computed an IMSCAND rank-20 decomposition
on the nine SIAM journals. The confusion matrix follows with the clusters from k-means as
the columns, and the actual journals in which the papers were published as rows:

96 Extracting Clusters from Large Datasets

1 2 3 4 5 6 7 8 9
SIAM J Appl Math 390 114 13 0 19 0 1 0 8
SIAM J Comput 0 377 11 142 0 4 0 4 0
SIAM J Control Optim 57 311 171 1 3 5 4 16 8
SIAM J Discrete Math 0 126 2 128 0 1 1 1 0
SIAM J Math Anal 234 115 4 0 41 3 2 0 18
SIAM J Matrix Anal A 12 135 2 7 1 255 3 6 1
SIAM J Numer Anal 98 176 7 1 59 26 197 3 44
SIAM J Opitmiz 0 173 12 8 0 8 1 142 0
SIAM J Sci Comput 85 244 7 5 37 118 103 7 48

An associated 3-D bar chart is illustrated in Figure 6.2.

F. 6.2. This chart contains the same information as the confusion matrix. The papers come from 9 SIAM
journals, and we have asked k-means to find 9 clusters. The height of each column is the number of documents.

We can see by looking at the columns of the confusion matrix that two of the clusters, #3
and #8, find papers mostly from one journal. However, if we look at these specific journals,
these clusters are not getting all the papers for the journal, just a large portion of them. Look-
ing at clusters (columns) #1, #4, #6, and #7 we are mostly getting papers from two journals.
We can easily make an argument that there are documents with related authors; title, abstract,
and key words; and citations in each of these different pairs of journal, and thus it is logical
that we have clusters containing documents from two journals. Additionally, the SIAM J Sci
Comput is a rather diverse journal, and thus occurs in many different predicted journals.

We have more than forty percent of the papers being clusters together in cluster #2. We
do not have an explanation for this occurrence. It may be that the relatively sparse co-citation
and co-reference slices have some impact on this. When IMSCAND and k-means were run
only on these two slices, more than 90% of the documents were clustered together. However,
IMSCAND and k-means on the other four slices only (abstract, author, keyword, and title)
still yields a cluster containing almost 50% of the data.

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 97

7. Future Work: Clustering Attributed Relational Graphs for Information Orga-
nization (CARGIO). CARGIO is a multi-year project whose goal is to determine clusters
from a set of files on a computer hard drive. Images of several hard drives are currently be-
ing examined in the groundtruthing process, to determine how the files are clustered. This
groundtruth test data will be used to help identify the correct procedure for future hard drives
where the clustering is unknown. For more information, see Appendix A.

8. Conclusions. We addressed the problem of clustering objects from datasets with
multiple similarity measures. Our approach includes the creation of a new class of tensors,
sp3way tensors, which allow the dense similarity matrices to be stored implicitly as the prod-
uct of a sparse object-feature matrix and its transpose. In addition, we have created a new
tensor decomposition, IMSCAND, which is identical in output to CP, but is computed on
the sparse object-feature matrices only. This new decomposition allows us to handle much
larger problems than if we stored the full similarity matrices. We have computed IMSCAND
on both generated and real data and tried to form some conclusions on the optimal ranks of
IMSCAND with regard to identifying the best number of clusters to represent a group of data.

REFERENCES

[1] B. W. B  T. G. K, Algorithm 862: MATLAB tensor classes for fast algorithm prototyping, ACM
Transactions on Mathematical Software, 32 (2006).

[2] R. B, Multi-way analysis in the food industry: Models, algorithms, and applications, PhD thesis, University
of Amsterdam, 1998.

[3] J. D. C  J.-J. C, Analysis of individual differences in multidimensional scaling via an N−way
generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970), pp. 283–319.

[4] L. D L, A link between the canonical decomposition in multilinear algebra and simultaneous matrix
diagonalization, SIAM Journal for Matrix Analysis and its Applications, 28 (2006), pp. 642–666.

[5] L. D L, B. DM,  J. V, A multilinear singular value decomposition, SIAM Jour-
nal for Matrix Analysis and its Applications, 21 (2000), pp. 1253–1278.

[6] D. M. D, T. G. K, W. P. K, Multilinear algebra for analyzing data with multiple link-
ages, Tech. Report SAND2006-2079, Sandia National Laboratories, Albuquerque, NM and Livermore,
CA, 2006.

[7] R. A. H, Foundations of the PARAFAC procedure: Models and conditions for an “explanatory”
multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), pp. 1–84.

[8] , Determination and proof of minimum uniqueness conditions for PARAFAC-1, UCLA Working Papers
in Phonetics, 22 (1972), pp. 111–117.

[9] , An index formulism that generalizes the capabilities of matrix notation and algebra to n-way arrays,
J. Chemometr., 15 (2001), pp. 689–714.

[10] M. A. J, Advances in record linking methodology as applied to the 1985 census of Tampa, Florida, Journal
of the American Statistical Society, 64 (1989), pp. 1183–1210.

[11] , Probabilistic linkage of large public health data file, Statistics in Medicine, 14 (1995), pp. 491–498.
[12] T. J  N. D. S, Kruskal’s permutation lemma and the identification of CANDECOMP/-

PARAFAC and bilinear models with constant modulus constraints, IEEE Transactions on Signal Pro-
cessing, 52 (2004), pp. 2625–2636.

[13] H. A. L. K, Towards a standardized notation and terminology in multiway analysis, J. Chemometr., 14
(2000), pp. 105–122.

[14] T. G. K, Multilinear operators for higher-order decompositions, Tech. Report SAND2006-2081, Sandia
National Laboratories, Albuquerque, NM and Livermore, CA, 2006.

[15] J. B. K, Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to
arithmetic complexity and statistics, Linear Algebra and its Applications, 18 (1977), pp. 95–138.

[16] , Rank, decomposition, and uniqueness for 3-way and n-way arrays, in Multiway Data Analysis, Else-
vier Science Publishers B.V., 1989, pp. 7–18.

[17] H. W. K, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, 2
(1955), pp. 83–87.

[18] R. P. MD, A simple comprehensive model for the analysis of covariance structures, Brit J. Math. Stat.
Psy., 33 (1980), p. 161.

[19] M. M̆, Comparing clusterings, Tech. Report 418, University of Washington, Dept. of Statistics, 2002.

98 Extracting Clusters from Large Datasets

[20] , Comparing clustering by the variation of information, in Lecture notes in Computer Science,
B. Schölkopf and M. K. Warmuth, eds., vol. 2777, Springer, 2003, pp. 173–187.

[21] , Comparing clustering − an axiomatic view, in Proceedings of the 22nd International Conference on
Machine Learning, 2005, pp. 577–584.

[22] C. R. R  S. M, Generalized inverse of matrices and its applications, Wiley, New York, 1971.
[23] N. D. S  R. B, On the uniqueness of multilinear decompositions of n-way arrays, Journal of

Chemometrics, 14 (2000), pp. 229–239.
[24] A. S, R. B,  P. G, Multi-way analysis: Applications in the chemical sciences, Wiley, 2004.
[25] A. S, J. M. F.  B,  L. D. L, Sufficient conditions for uniqueness in CANDECOM-

P/PARAFAC and INDSCAL with random component matrices, Psychometrika, 71 (2006), pp. 219–229.
[26] J. M. F.  B  N. D. S, On uniqueness in CANDECOMP/PARAFAC, Psychometrika, 67

(2002), pp. 399–409.
[27] S.  D, Performance criteria for graph clustering and Markov cluster experiments, Tech. Report

INS-R0012, Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands, 2000.
[28] W. E. W, The state of record linkage and current research problems, Internal Revenue Service Publica-

tion R99/04, 1999.

Appendix A. Clustering Attributed Relational Graphs for Information Organiza-
tion (CARGIO). We are currently considering seven different attributes of the files, each of
which produces an adjacency matrix which becomes one slice of a tensor. Three of the edges
(parent, ancestry, and symbolic link) are directed, and the other four (time delta, sibling, name
match, and text match) are undirected.

• time delta: This data yields a completely dense adjacency matrix. Specifically, for
any set of two nodes, the difference in seconds between time stamps is used to com-
pute the weight. If di j is the difference in seconds, then the weight is 1/(1 + di j).

• parent: This is binary data. If file i is contained within folder j, then the (i, j) entry
of the adjacency matrix is 1. Otherwise, it has value 0.

• sibling: Files i and j are siblings if they are contained inside the same directory. The
integer edge weight between them gives their depth in the directory.

• ancestry: Perhaps the easiest way to think of this is that the ancestry distance be-
tween 2 points is how many of the Unix “cd ..” commands need to be executed to
move from node i to node j. If it is not possible to move from i to j in this way, then
the distance is∞. The weight, wi j is computed as 1/(1 + di j).

• name match: This is a measurement of how much two filenames match. Higher
weights are given to files whose prefix letters are more similar than those whose
suffix letters are similar. The weighting is done using the Jaro-Winkler distance
metric [28] which is a measure of similarity between two strings. This is a variant
of the Jaro distance metric [10, 11].

• text match: This measures how well the text matches within two files for normal
ASCII text files only. For each file, a word bag is created, then compared to other
word bags. The similarity measurement being used is the Tanimoto coefficient (Ex-
tended Jaccard Coefficient — see http://en.wikipedia.org/wiki/Jaccard\
_index).

• symbolic link: This is currently a zero matrix, or an extremely sparse binary matrix.
If i is a symbolic link to j, then the (i, j) element is 1.

A.1. Adjusting CARGIO data for use with IMSCAND. In its current form, this prob-
lem is not computationally possible for the test hard drives. Every sample hard drive has at
least 4500 files. A tensor, X to store this data would be ∈ R4500×4500×7. The slices range from
having 3 to more than 21 million nonzero elements. There are more than 40 million nonzero
elements total, which becomes too much for an average computer during the CP-ALS algo-
rithm.

We are currently working to adjust the edge types so that they may be treated by the
IMSCAND decomposition. We have extended the IMSCAND decomposition for this appli-

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 99

cation to include the ability to treat both sparse, symmetric similarity (object-object) matrices
and sparse object-feature matrices (which are multiplied by their transpose to form a tensor
slice).

It is not immediately obvious how to adjust time delta. One possibility is to form a
sparse, binary file-time matrix, where the columns are different timeframes, e.g., 1 minute,
10 minutes, 1 hour, 10 hours, 1 day, 1 week, 1 month, 3 months, 6 months, 1 year, > 1
year. Then if file i was altered in the last 7 minutes, there would be a 1 in row i in the 10
minute column. The similarity matrix is formed as the product of the file-time matrix and its
transpose.

The parent, sibling, and ancestry matrices are all formed from the same starting matrix.
Consider the set of 8 nodes with edges illustrated in Figure A.1.

F. A.1. Each node represents a computer file. Node 3 is a parent to nodes 1 and 2. Node 6 is a parent to
nodes 3 and 4. Node 7 is a parent to node 5, and node 8 is a parent to nodes 6 and 7.

We represent this graph as a matrix where the (i, j) element of the matrix is 1 if file j is
the parent of file i.

1 2 3 4 5 6 7 8

P =

1
2
3
4
5
6
7
8



1
1

1
1

1
1
1


Technically, the matrix P is the parent matrix. However, for implementation we need sym-
metry, thus we could use P + PT to represent the parent-child relationship.

We have two options for the sibling matrix. We could compute PPT directly and get
sibling information without weights. The other option is to compute a new matrix P̂ whose
edges are weighted corresponding to the square root of their depth in the tree, then compute
P̂P̂T . With P̂ defined as:

1 2 3 4 5 6 7 8

100 Extracting Clusters from Large Datasets

P̂ =

1
2
3
4
5
6
7
8



√
3
√

3
√

2
√

2
√

2
1
1


we compute two options for the sibling matrices:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

PPT =

1
2
3
4
5
6
7
8



1 1
1 1

1 1
1 1

1
1 1
1 1


, P̂P̂T =



3 3
3 3

2 2
2 2

2
1 1
1 1


Finally, we can get binary ancestry information by first looking at powers of the original

matrix P. Matrix P2 gives grandparent information, P3 gives great-grandparent information,
etc. For the current example, all powers of P ≥ 4 are zero.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

P2 =

1
2
3
4
5
6
7
8



1
1

1
1
1


P3 =

1
2
3
4
5
6
7
8



1
1


With these powers of the matrix P, we describe how to form the matrix A, which has a sparse
structure and can be multiplied by its transpose to form the full ancestry similarity matrix. We
must first decide how many levels of ancestry are important. A value of 8 may be reasonable,
since that would give ancestry information for up to eight levels of files (or up to 7 subfolders).
For this example, however, we can choose 3 since all larger powers produce a zero matrix.
Then, define the ancestry matrix as:

A =
3∑

k=0

Pk

k!
.

Notice this is an approximation of the matrix exponential, eA =
∑∞

k=0 Pk/k!. The matrix A
is our ancestry object-feature matrix, and can be multiplied by its transpose to form a dense
ancestry similarity matrix.

Both name match and text match are computed similarly. For each of these we compute
a different list of appropriate terms that are used as the columns of a file-term matrix. This
produced a binary matrix in which a value of 1 indicates that the word associated with that
column is found in the name (or the text inside) of the file.

The final slice, symbolic link is an extremely sparse binary matrix. We create its slice by
adding the binary matrix to its transpose in order to obtain a symmetric matrix.

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 101

A.2. Numerical Results. We have analyzed both real and simulated data. Our main
goal is to gain intuition for the choice of the CP rank and to increase our understanding of the
k-means clustering algorithm. We believe our first attempt at generating data was too simple.
We have not yet determined the effectiveness of our second code at generating useful data.
Both of these datasets were only run using CP.

A.2.1. Performance Metrics. For real or simulated data when we know the true cluster-
ing, we can compare the truth to our k-means clustering output. The four metrics investigated
are the variation of information (VIC), the Scaled Coverage measure (Dongen), classification
error (CE), and Mirkin’s metric (Mirkin). While discussing these clusters, we will use the
notation C and C′ to denote two different clusters. As previously defined N is the number
of nodes and K is the number of clusters. We now also define nk to be the number of nodes
in cluster k (we also have k′, K′ and nk′ for the cluster C′). Finally, we define nkk′ to be the
number of nodes in both cluster k in C and cluster k′ in C′.

The variation of information [19, 20, 21] measures the amount of information gained
by moving from C to C′ and adds that to the information lost by moving from C′ to C.
Specifically, this function is composed of entropy functions for each of the two clusters, H(C)
and H(C′), and a function of both clusters which gives their mutual information, I(C,C′). We
compute the VIC metric as

dVIC = H(C) + H(C′) − 2I(C,C′)

where

H(C) = −
K∑

k=1

nk

N
log

nk

N
and I(C,C′) =

K∑
k=1

K′∑
k′=1

nkk′

N
log

N · nkk′

nk · nk′
.

The Scaled Coverage measure is also called the van Dongen metric [27]. This metric
gives the number of node substitutions needed to convert clustering C to clustering C′. Then,
per a suggestion from Meilă in [21], the metric is normalized by dividing by 2N. Specifically,
the normalized metric is computed:

ddongen = 1 −
1

2N

K∑
k=1

max
k′

nkk′ −
1

2N

K′∑
k′=1

max
k

nkk′ .

Classification error (CE)2 is based on the Kuhn-Munkres (Hungarian) algorithm [17, 21].
It is similar to van Dongen’s metric, however it is looking for a unique mapping, whereas van
Dongen’s approach allows multiple clusters to be mapped to one cluster. The metric is defined
by

dCE(C,C′) = 1 −
1
N

max
σ

K∑
k=1

nk,σ(k).

It is assumed that K < K′ and we define σ to be an injective map from {1, . . . ,K} to
{1, . . . ,K′}. Essentially, CE looks at all possible one-to-one comparisons of clusters in C
to clusters in C′ and chooses the assignment that minimizes the distance between the two
clusterings.

2Although this algorithm seems to be a good measure of the clustering accuracy, it can take an extremely long
time to compute when we are comparing two clustering schemes that are not very similar. For the time being, we are
not computing this metric.

102 Extracting Clusters from Large Datasets

The final metric we consider is Mirkin’s metric. This metric gives twice the number of
points that are in disagreement between any two clusterings C and C′. Another thought is
that it gives twice the number of point pairs that are in the same cluster in C, but in different
clusters in C′, or vice versa. This metric is rescaled by dividing by N2. We compute this as

dmirkin(C,C′) =
1

N2

∑
k

n2
k +

∑
k′

n2
k′ − 2

∑
k

∑
k′

n2
kk′

 .
A.2.2. Our initial set of generalized data. We are generating data with a predetermined

clustering. Our goal is to run CP and compute several performance metrics to determine
which CP ranks are best at identifying the correct number of clusters. To run the code we
must input the number of nodes, N (= number of rows = number of columns), the number of
tensor slices, P, and the number of clusters, K.

Specifically, we generate a vector of N elements that gives us the clustering labels. We
then take the first value in pcvec (which we will call pcvec(1)) and the first value in pwvec
(called pwvec(1)) and create the adjacency matrix that will be the first slice of our tensor. For
any two points, if they are in the same cluster, the probability that there is a link between them
is in the range [pcvec(1), 1]. If there is a link we can either choose for it to have a random
weight in that same range, or we can decide to create a binary adjacency matrix and store a
weight of 1. For any two points in different clusters, the probability of a link between them is
in the range [0, pwvec(1)]. Again, this can either have a random link with the weight falling
in the specified range, or a weight of 1. After we have completed this adjacency matrix,
we move on to the second elements in pcvec and pwvec to compute the second slice, and
continue until we have all the matrices to produce our tensor.

With the tensor produced, we begin the process of computing CP of various ranks and
the corresponding clusters and performance metrics. We initialize each CP using the eigen-
vectors of X(2)XT

(2), where X(2) is the mode-2 matricization of X. For each CP decomposition
computed, we call the (built-in with the Statistics package) k-means algorithm to run on the
rows of the output matrix A. One option we choose in k-means clustering is to run the algo-
rithm multiple times and choose the clustering with the smallest normwise error. This should
reduce the odds of k-means settling on a false minimum. In addition, if it naturally occurs
that a cluster is lost in the k-means process, we allow the algorithm to simply continue with
one less cluster.

Initially, we plotted multiple outputs, in addition to the metrics, in hopes of seeing some
strong indicator for the “best” choice for the rank of CP. In addition to the four performance
metrics, we also considered fit, or normwise distance between the original tensor and the
Kruskal tensor, from the CP algorithm, the number of iterations it took CP to converge, and
a measure from k-means of the distance of all points to their centroid for each cluster After
several trials, we decided to not compute the CE performance metric for each iteration, since
it was taking an extremely long time, especially when the clustering from k-means was not
very close to the true clustering. We also realized that fit and iteration from CP did not
indicate that any rank of CP was better than any other. However, the distance measure of
points to their centroid from k-means turned out to be quite helpful when divided by the rank
of CP. The value of the CP rank is the number of dimension, so dividing the sum by this value
is essentially a normalization of the sum over the dimensions.

The included results correspond to a 1000×1000×5 tensors with approximately 300,000
nonzero entries total and ten true clusters. Simulations were run, asking k-means for 7, 10,
and 14 clusters. I computed CP ranks for 1 to 30, computing k-means clustering at each rank.

For all three values of k-means, the performance metrics did not indicate that any rank
for CP is better than any other. In general, Mirkin’s metric was very low (less than 0.36 for

T.M. Selee, T. Kolda, W.P. Kegelmeyer, and J.D. Griffin 103

7 k-means, and less than 0.16 for the other two k-means), which indicates that the k-means
clusters were good approximations to the true clusters according to that metric. Dongen’s
metric was also quite low, never ranging above 0.33. The VIC metric can grow quite large
when looking at two very different clusters. We did get some values to be quite low (less than
0.2), and it achieved a maximum value at 1.46. The CE took an extremely long time to run,
and in our limited experience, we did not find it to be a good indicator of the best CP rank, so
we have omitted computing it.

We do have 2 decent indicators of the true number of clusters. These both occur using
an output from k-means that gives the sum of the distances from each point to its centroid.
We consider the sum directly as well as a normalization in which we divide each sum by the
number of dimensions (rank of CP). As long as we ask k-means to find a number of clusters
greater than or equal to the true number, this jump occurs. When k-means is asked to find
less than the true number of clusters, the jump occurs at the number of clusters asked for by
k-means.

The major reason we believe this to be too simplistic is that similar results can be gener-
ated from just one slice of the tensor.

A.2.3. Our second set of generalized data. One of the major goals with this data was
that we wanted to ensure that all (or at least more than one) of the slices were needed to
obtain all of the information. We generate data with a predetermined clustering and create
the adjacency matrices the same way as the original code. The difference is that we can
determine, for each slice (or adjacency matrix), how many of the clusters to ignore. When we
ignore a cluster, all of its nodes are treated with the out-of-cluster probabilities of occurring.
This code also allows us to restrict the number of nonzero elements per slice.

In the trials we ran using this dataset, we were not able to identify an optimal CP rank.
Both normalized and unnormalized sums of distances of k-means points to their centroids
could indicate the number of clusters requested from k-means. In addition, the performance
metrics were better once we were computing a CP rank greater than the number of clusters
requested from k-means. These results coincided with the results from the sp3way trials.

CSRI Summer Proceedings 2007 104

PYTHON OPTIMIZATION MODELING OBJECTS (PYOMO)

NICOLAS L. BENAVIDES‡, ROBERT D. CARR§, AND WILLIAM E. HART¶

Abstract. We describe the Python Optimization Modeling Objects (Pyomo) package. Pyomo is a Python
package that can be used to define abstract problems, create concrete problem instances, and solve these instances
with standard solvers. Pyomo provides a capability that is commonly associated with algebraic modeling languages
like AMPL and GAMS. We introduce Pyomo by contrasting it with the capabilities of AMPL.

1. Introduction. Algebraic Modeling Languages (AMLs) are high-level programming
languages for describing and solving mathematical problems, particularly optimization-
related problems [9]. AMLs like AIMMS [1], AMPL [2, 8] and GAMS [5] have program-
ming languages with an intuitive mathematical syntax that supports concepts like sparse sets,
indices, and algebraic expressions. AMLs provide a mechanism for defining variables and
generating constraints with a concise mathematical representation, which is almost essential
for real-world problems that can involve thousands of constraints and variables.

An alternative strategy for modeling mathematical problems is to use a standard pro-
gramming language in conjunction with a software library that uses object-oriented design to
support similar mathematical concepts. Although these modeling libraries sacrifice the intu-
itive mathematical syntax of an AML, they allow the user to leverage the greater flexibility
of standard programming languages. For example, modeling libraries like FLOPC++ [4],
OPL [6] enable the solution of large, complex problems within a user-defined application.

This paper describes Pyomo, the Python Optimization Modeling Objects (Pyomo) pack-
age. Pyomo is a Python package that can be used to define abstract problems, create concrete
problem instances, and solve these instances with standard solvers. Like other modeling li-
braries, Pyomo can generate problem instances and apply optimization solvers with a fully
expressive programming language. Further, Python is a noncommercial language with a very
large user community, which will ensure robust support for this language on a wide range of
compute platforms.

Python is a powerful dynamic programming language that has a very clear, readable
syntax and intuitive object orientation. Python’s clean syntax allows Pyomo to express math-
ematical concepts with a reasonably intuitive syntax. Further, Pyomo can be used within
an interactive Python shell, thereby allowing a user to interactively interrogate Pyomo-based
models. Thus, Pyomo has many of the advantages of both AML interfaces and modeling
libraries.

Pyomo makes a clear distinction between the abstract specification of a model, gener-
ation of model instances, and the solution of model instances. Abstract models are a key
element of AML’s like AMPL, and this capability clearly distinguishes Pyomo from other
Python modeling libraries like CVXOpt [3] and PuLP [7]. Pyomo models can be solved with
either Python optimizers, or with externally defined solvers (e.g. GLPK, CPLEX and CBC).
Further, Python can integrate extension modules in low level languages like C or C++ to di-
rectly leverage fast solver libraries, and wrapped modules can be used within Python exactly
like native Python code.

Section 2 illustrates how Pyomo would be used to model a simple application. We com-
pare and contrast the Pyomo formulation with a formulation developed in the widely used
AMPL modeling language. Section 3 describes the Pyomo classes that are used to define

‡Santa Clara University, NBenavides@scu.edu
§Sandia National Laboratories, rdcarr@sandia.gov
¶Sandia National Laboratories, wehart@sandia.gov

N.L. Benavides, R.D. Carr, and W.E. Hart 105

model components.

2. A Simple Example. In this section we illustrate Pyomo’s syntax and capabilities by
demonstrating how a simple AMPL example can be replicated with Pyomo Python code.

Consider the basic AMPL program prod.mod:

s e t P ;

param a { j i n P } ;
param b ;
param c { j i n P } ;
param u { j i n P } ;

v a r X { j i n P } ;

maximize T o t a l P r o f i t : sum { j i n P } c [j] ∗ X[j] ;

s u b j e c t t o Time : sum { j i n P } (1 / a [j]) ∗ X[j] <= b ;

s u b j e c t t o L i m i t { j i n P } : 0 <= X[j] <= u [j] ;

To translate this into Pyomo, the user must first import the Pyomo module and create a
Pyomo Model object:

#
I mp or t Pyomo
#
from pyomo i m p o r t ∗

#
C r e a t e model
#
model = Model ()

This import assumes that Pyomo is available on the users’s Python path (see Python docu-
mentation for PYTHONPATH for further details). Next, we create the sets and parameters
that correspond to the data used in the AMPL model. This can be done very intuitively using
the Set and Param classes.

model . P = S e t ()

model . a = Param (i n d e x=model . P)
model . b = Param ()
model . c = Param (i n d e x=model . P)
model . u = Param (i n d e x=model . P)

Note that parameter b is a scalar, while parameters a, c and u are arrays indexed by the set P.
Pyomo also defines the ProductSet class, which can be defined in a similar manner.

Next, we define the decision variables in this model.

d e f X bounds (j , model) :

106 Python Optimization Modeling Objects (Pyomo)

r e t u r n (0 , model . u [j])
model .X = Var (i n d e x=model . P , bounds=X bounds)

Decision variables and model parameters are used to define the objectives and constraints in
the model. Parameters define constants and the variables are the values that are optimized.
Parameter values are typically defined by a data file that is processed by Pyomo.

Objectives and constraints are explicitly defined expressions in Pyomo. The Objective
and Constraint classes require a rule option that specifies how these expressions are con-
structed. This is a function that takes one or more arguments: the first arguments are indices
into a set that defines the set of objectives or constraints that are being defined, and the last
argument is the model that is used to define the expression.

d e f O b j e c t i v e r u l e (model) :
ans = 0
f o r j i n model . P :

ans = ans + model . c [j] ∗ model .X[j]
r e t u r n ans

model . p r o f i t = O b j e c t i v e (r u l e=O b j e c t i v e r u l e)

d e f T i m e r u l e (model) :
ans = 0
f o r j i n model . P :

ans = ans + (1 . 0 / model . a [j]) ∗ model .X[j]
r e t u r n ans < model . b

model . Time = C o n s t r a i n t (r u l e=T i m e r u l e)

The rules used to construct these objects use standard Python functions. Finally, note that the
Time rule function includes the use of < and > operators on the expression. These operators
are used to define upper and lower bounds on the constraints.

Once an abstract model has been created, it can be printed as follows:

p r i n t ’ ’ABSTRACT MODEL’ ’
model . p p r i n t ()

This summarize the information in the Pyomo model, but it does not print out explicit ex-
pressions. This is due to the fact that an abstract model needs to be instantiated with data to
generate the model objectives and constraints:

i n s t a n c e = model . c r e a t e (’ ’ prod . da t ’ ’)

p r i n t ’ ’MODEL INSTANCE’ ’
i n s t a n c e . p p r i n t ()

Appendix A shows the final Python code for this example.
Once a model instance has been constructed, an optimizer can be applied to it to find

an optimal solution. For example, the PICO integer programming solver can be used within
Pyomo as follows:

o p t = s o l v e r s . PICO (p a t h =” /home / w eh a r t / b i n / PICO ” , k e e p F i l e s=True)
s o l u t i o n s = o p t . s o l v e (i n s t a n c e)

N.L. Benavides, R.D. Carr, and W.E. Hart 107

This creates an optimizer object for the PICO executable defined in a given path, and it
indicates that temporary files should be kept. The Pyomo model is handed to this optimizer,
which returns the final solutions generated by the optimizer.

3. Documentation of Pyomo Objects. In this section we provide more detail on the
definitions of Pyomo classes that are used to define models.

3.1. Sets. The Set() class is used to index other objects (e.g. Param and Var). This
class has the same look-and-feel as a sets.Set class, but it can be used to define an abstract
set. This class contains a concrete set, which can be initialized by the load() method, or
directly.

Constructor arguments:
• within - A set that defines the type of values that can be contained in this set
• default - Default set members, which may be overridden when setting up this set
• rule - A rule for setting up this set with existing model data. This has the functional

form: f: pyomo.Model − > pyomo.Set
• restriction - Define a rule for restricting membership in a set. This has the functional

form: f: data − > bool and returns true if the data belongs in the set

3.2. Product Sets. The ProductSet() class represents the cross product of other sets.

Constructor arguments:
• default - Default set members, which may be overridden when setting up this set
• rule - A rule for setting up this set with existing model data. This has the functional

form: f: pyomo.Model − > pyomo.Set
• restriction - Define a rule for restricting membership in a set. This has the functional

form: f: data − > bool and returns true if the data belongs in the set
In the following AMPL code, the rate parameter’s index set is the cross product of two

sets:

s e t PROD;
s e t STAGE;

param r a t e {PROD, STAGE } ;

In Pyomo, the cross product is created with the ProductSet class, and the result of this is
used to index other Pyomo objects:

model .PROD = S e t ()
model . STAGE = S e t ()

model . s e t p r o d = P r o d u c t S e t ((model . PROD, model . STAGE))
model . r a t e = Param (i n d e x=model . s e t p r o d)
s t e e l 4 m o d . r a t e > 0

3.3. Parameters. The Param() class defines constant values in a model, and a parame-
ter object may be defined over an index.

Constructor arguments :

108 Python Optimization Modeling Objects (Pyomo)

• index - The index set that defines the distinct parameters. By default, this is None,
indicating that there is a single parameter.

• domain - A set that defines the type of values that each parameter must be.
• validate - A rule for validating this parameter with respect to data that exists in the

model
• default - A set that defines default values for this parameter
• rule - A rule for setting up this parameter with existing model data

3.4. Variables. The Var() class defines a numeric variable, which may be defined over
an index.

Constructor arguments:
• index - The index set that defines the distinct variables. By default, this is None,

indicating that there is a single variable.
• domain - A set that defines the type of values that each parameter must be.
• default - A set that defines default values for this variable
• bounds - A function that defines bound constraints for this variable

Simple bound constraints on variables can be specified with the bounds rule:

model . P = S e t ()

model . x l b = Param (i n d e x=model . P)
model . x ub = Param (i n d e x=model . P)

d e f x bounds (i , model) :
r e t u r n (model . x l b [i] , model . x ub [i])

model . x = Var (i n d e x=model . P , r u l e=x bounds)

3.5. Objectives. The Objective() class defines an objective expression.

Constructor arguments:
• rule - A rule for constructing this objective with existing model data.
• sense - Used to define wether this objective should be minimized or maximized

(minimization is the default).

3.6. Constraints. The Constraint() class defines an expression whose value is con-
strained in the model.

Constructor arguments:
• rule - A rule for constructing this constraint with existing model data.
• index - Defines a set of constraints over an index.

Note that the rule option generally needs to include a definition of the bounds on a
constraint. A constraint must have either an upper or lower bound, and it may have both. For
example:

model . P = S e t ()
model .Q = S e t ()

model . x = Var (i n d e x=model .Q)

d e f c r u l e (i , model) :
ans = 0

N.L. Benavides, R.D. Carr, and W.E. Hart 109

f o r q i n model .Q:
ans = ans + model . x [q]

ans = ans > 0
r e t u r n ans < 1

model . c = C o n s t r a i n t (i n d e x=model . P , r u l e= c r u l e)

The last two lines in the c rule function define upper and lower bound values for the c con-
straint. Note that this is a non-standard use of the < and > operators; these operators return
an expression rather than a boolean value.

3.7. Models. The Model() class defines a mixed-integer model that can be optimized
by a user. This class takes no arguments, but it is a container for instances of the other Pyomo
objects created by the user. For example, consider the statement:

model . x = Var ()

This statement registers the variable x in the model, and assigns it the name “x”.

4. Conclusions. Pyomo has many of the features of abstract modeling languages and
optimization modeling libraries, but the following features of Pyomo are noteworthy:

• Pyomo supports the ability to define abstract problems from which problem in-
stances can be generated. Further, Pyomo can generate multiple instances, which
can be analyzed simultaneously in separate Python class objects.

• Pyomo is based on a powerful, commonly available open-source language. Thus,
there are no licensing limitations with the use of Pyomo, and the set of Pyomo
objects can be customized for an application in ways that are not possible with com-
mercial AMLs and modeling libraries.

• Python has a clean syntax, so Pyomo modeling objects can be used in an intuitive
manner.

• Pyomo models can leverage Python’s programming language to define complex data
structures and standard programming constructs like classes and functions. Further,
Python can be naturally linked with external libraries for high-performance kernels.

• Pyomo can integrate optimization solvers in an extensible manner. Optimizers can
be defined within Python itself, and external optimizers can be launched using file
I/O to communicate with Python.1

Pyomo is probably most similar to the FLOPC++ modeling library. FLOPC++ is writen in
C++, and it has many of the same objects as are used in Pyomo. While FLOPC++ enables
models to be embedded in compiled application codes, Pyomo enables the rapid prototyping
of models in a scripting language. Thus, these capabilities seem quite complementary.

The current implementation of Pyomo has been validated on a small set of simple models.
In the future, more extensive validation of Pyomo is needed to ensure that it can express a
wide range of complex problems. This includes the integration of hooks for other types
of optimizers, like the nonlinear optimizers in Dakota. Further, the performance of Pyomo
needs to be analyzed to ensure that it can effectively generate large-scale optimization models.
Finally, this document needs to be extended to include examples that illustrate how Pyomo
can leverage Python to develop complex models more naturally than AMLs like AMPL and
GAMS.

This document describes the initial prototype of Pyomo. Once this code has stabilized,
we plan to integrate Pyomo into the COIN-OR optimization software repository to encourage

1For example, this is similar to the manner in which AMPL launches optimizers.

110 Python Optimization Modeling Objects (Pyomo)

its use within the academic and business communities.

Acknowledgements. Thanks to Jon Berry and Cindy Phillips for their critical feedback
on the design of Pyomo.

REFERENCES

[1] AIMMS home page. http://www.aimms.com.
[2] AMPL home page. http://www.ampl.com/.
[3] CVXOPT home page. http://abel.ee.ucla.edu/cvxopt.
[4] FLOPC++ home page. https://projects.coin-or.org/FlopC++.
[5] GAMS home page. http://www.gams.com.
[6] OPL home page. http://www.ilog.com/products/oplstudio.
[7] Pulp: A python linear programming modeler. http://www.jeannot.org/˜js/code/index.en.html.
[8] R. F, D. M. G,  B. W. K, AMPL: A Modeling Language for Mathematical Programming,

2nd Ed., Brooks/Cole–Thomson Learning, Pacific Grove, CA, 2003.
[9] J. K, Modeling Languages in Mathematical Optimization, Kluwer Academic Publishers, 2004.

N.L. Benavides, R.D. Carr, and W.E. Hart 111

I m p o r t s
from pyomo i m p o r t ∗

Se tup t h e model
model = Model ()

model . P = S e t ()

model . a = Param (i n d e x=model . P)
model . b = Param ()
model . c = Param (i n d e x=model . P)
model . u = Param (i n d e x=model . P)

d e f X bounds (j , model) :
r e t u r n (0 , model . u [j])

model .X = Var (i n d e x=model . P , bounds=X bounds)

d e f O b j e c t i v e r u l e (model) :
ans = 0
f o r j i n model . P :

ans = ans + model . c [j] ∗ model .X[j]
r e t u r n ans

model . p r o f i t = O b j e c t i v e (r u l e=O b j e c t i v e r u l e)

d e f T i m e r u l e (model) :
ans = 0
f o r j i n model . P :

ans = ans + (1 . 0 / model . a [j]) ∗ model .X[j]
r e t u r n ans < model . b

model . Time = C o n s t r a i n t (r u l e=T i m e r u l e)

p r i n t ”ABSTRACT MODEL”
model . p p r i n t ()

C r e a t e t h e model i n s t a n c e
i n s t a n c e = model . c r e a t e (” prod . d a t ”)

p r i n t ”MODEL INSTANCE”
i n s t a n c e . p p r i n t ()

112 CSRI Summer Proceedings 2007

M.L. Parks and S.S. Collis 113

Transformation

In the section we include research in areas transforming the way science and engineering
are conducted. Much effort in the past has been focused solely on the creation of computa-
tional models, also known as the forward model. This approach alone is no longer sufficient as
the performance, reliability, and safety requirements for systems depend critically the results
of these models. Techniques and procedures are needed to assess the credibility of computa-
tional simulations for engineering and scientific analyses if we are to use them for high-level
decision-making. The papers in this section address issues and applications in validation &
verification, uncertainty quantification, and related areas.

Vanderlei and Hopkins consider a posteriori error estimation for immersed interface so-
lutions to quantify the error introduced in the problem discretization. Shunn and Knupp
explore the effects of tabulated state-relationships on the computational performance of low-
Mach number combustion codes using the method of manufactured solutions (MMS). In
addition to verifying the order-of-accuracy of the code, the MMS helps highlight robustness
issues in existing variable-density flow-solvers. Varela and Oldfield describe their efforts
to validate analytical models describing the impact of checkpointing on the performance of
large-scale applications on massive-scale supercomputers. Reale-Levis et al. describe a new
algorithm for optimization under uncertainty that simultaneously minimizes the variance of
a desired output response while maintaining the constraint that the mean is fixed at a cer-
tain level. They then demonstrate their algorithm using an automotive device design robust-
ness example. McFarland et al. explored the use of Bayesian model calibration as a tool for
calibrating a computational simulation with experimental observations. Their methodology
simultaneously keeps track of the uncertainty in the process. Erten and Knupp describe a
mesh-optimization algorithm for curved domains utilizing a target-matrix paradigm. Finally,
Constantine and Knupp develop a stochastic method of manufactured solutions. This allows
them to verify the convergence of statistics of the solutions to stochastic PDEs produced by
uncertainty quantification algorithms that compute moments of solutions of PDEs with ran-
dom inputs.

M.L. Parks
S.S. Collis

December 6, 2007

114 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2007 115

ERROR ESTIMATION FOR IMMERSED INTERFACE SOLUTIONS

BENJAMIN A. VANDERLEI† AND MATTHEW M. HOPKINS‡

Abstract. We apply a modification of the Method of Nearby Problems in order to compute error estimates for
solutions obtained using the Immersed Interface Method. The problem we examine is an elliptic PDE in which the
coefficients have discontinuities across some internal boundary.

1. Introduction. In order to make numerical approximations more useful in applica-
tion settings it is important to understand and, if possible, to quantify the error introduced
by discretizing the problem. An important class of error estimators known as a posteriori
estimates attempt to quantify the error in a particular solution given only the solution. This
work uses a variation of the Method of Nearby Problems [1, 4, 5, 6, 7], which is related to
the defect correction principle. We consider the technique applied to an elliptic problem in
which the coefficients have discontinuities across some internal boundary, for which we use
the Immersed Interface Method [2, 3] to obtain numerical solutions.

2. Method of Nearby Problems. The Method of Nearby Problems (MNP) is a post-
processing technique used to compute an estimate of the discretization error associated with
a numerical solution. The key idea of MNP is to construct a problem which is “nearby” the
problem of interest, yet is one for which an exact solution is known. The question of how best
to construct this perturbation, and the resulting definition of the “nearness” of the problem
are currently under investigation.

We describe here an example of carrying out the MNP procedure in a discrete setting as
opposed to approaches using solution reconstruction. Consider the following linear elliptic
boundary value problem: Lu = f and the finite difference discretization: Lhuh = fh which one
solves to obtain the numerical approximation uh. The defect correction principle [8] is a very
general idea that allows one to describe an iterative solution method to a problem based on a
series of corrections. Alternatively, one may apply this principle to generate an estimate of
the error associated with a particular solution rather than use the information as a correction.
We have implemented the procedure as follows:

1. Begin with solving the original discrete problem Lhuh = fh.
2. Construct a second discretization of the operator L, say L̃h.
3. Use L̃h to compute the defect (perturbation) sh = L̃huh − fh
4. Use the original discretization to solve a perturbed problem Lhvh = fh + sh.
5. Estimate the discretization error of uh with the quantity uh − vh.

One difference between this technique and the original MNP is that in this setting we
no longer have access to an exact analytic solution of the nearby problem and thus cannot
measure the error directly in solving it. While we do not have an exact solution, we do have
the original approximation uh to work with. In fact, one may write uh − vh in terms of the true
error in order to show that it may be a good estimate.

We will use the fact that Lhvh = fh + sh = L̃huh together with the following definitions of
the local truncation errors τh and τ̃h of Lh and L̃h respectively:

LhuR = fh + τh (2.1)
L̃huR = fh + τ̃h (2.2)

where uR is the analytic solution of the original problem restricted to the grid.

†Tulane University, bvander@math.tulane.edu
‡Sandia National Laboratories, mmhopki@sandia.gov

116 Error Estimation for Immersed Interface Solutions

Lhvh = fh + sh

= L̃huh (definition of sh)

= L̃hL−1
h fh (uh solves original problem)

= L̃h(uR − L−1
h τh) (by 2.1)

= fh + τ̃h − L̃hL−1
h τh (by 2.2)

= LhuR − τh + τ̃h − L̃hL−1
h τh (by 2.1)

so that

vh = uR − L−1
h τh + L−1

h τ̃h − L−1
h L̃hL−1

h τh

The estimate of the error can then be written:

uh − vh = uh − (uR − L−1
h τh + L−1

h τ̃h − L−1
h L̃hL−1

h τh)

= −(uR − uh) + L−1
h τh − L−1

h τ̃h + L−1
h L̃hL−1

h τh

= L−1
h L̃hL−1

h τh − L−1
h τ̃h

= L−1
h L̃h(uR − uh) − L−1

h τ̃h

We see then that uh−vh will be a good approximation of the true error provided that L−1
h τ̃

is small and L−1
h L̃h is an approximation to the identity operator. A natural choice for L̃h is a

higher order discretization of L.

−4
h2

1
h2

1
h2

1
h2

1
h2

(a) standard 5 point stencil

−60
12h2

16
12h2

16
12h2

16
12h2

16
12h2

−1
12h2

−1
12h2

−1
12h2

−1
12h2

(b) wide 9 point stencil

−50
12h2

16
12h2

16
12h2

−1
12h2

−1
12h2

11
12h2

6
12h2

4
12h2

−1
12h2

(c) boundary stencil

F. 2.1. Stencils used for L̃h

To give an example of the estimates that can be obtained we consider a Poisson problem
on a square domain with Dirichlet boundary conditions. For the discrete operator Lh we will
use the standard 5-point finite difference scheme shown in Figure 2.1(a) applied on a regular
NxN grid. To construct L̃h we take the sum of one-dimensional high-order difference approx-
imations of the second derivative. The stencil and corresponding coefficients for this fourth
order scheme are shown in Figure 2.1(b). Note that for grid points adjacent to a boundary we
make use of asymmetric stencils such as the one shown in Figure 2.1(c).

Figure 2.2 shows the results. We see that the discrepancy between the estimate and the
true error converges to zero as O(h4).

B.A. Vanderlei and M.M. Hopkins 117

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

16 32 64 128 256
N

||u − uh||∞
×

×

×

×

×
||uh − vh||∞

+

+

+

+

+
||(u − uh) − (uh − vh)||∞

?

?

?

?

?

F. 2.2. Error in estimates made for Poisson problem.

3. Interface Problem. We next consider the following elliptic interface problem:

∇ · (β∇u) = f (3.1)

on the domain Ω = [-1,1] x [-1,1] with Dirichlet boundary conditions. We will take the circle
given by x2 + y2 = 1/4 as the interface between the subdomains and define Ω− to be the set
of points inside the circle and Ω+ to be the set of points outside the circle. Figure 2.3 shows
this geometry. In each of the subdomains β will be constant. In §3.1 we will describe how
to obtain a numerical solution using the Immersed Interface Method [2]. In §3.2 we describe
the construction of a higher order discretization that we will use as L̃h.

x

y

Ω−

Ω+

F. 2.3. Geometry of interface problem with irregular points indicated.

118 Error Estimation for Immersed Interface Solutions

3.1. Immersed Interface Method. The methodology of the Immersed Interface
Method (IIM) is to work on a regular Cartesian grid and use a standard discretization of
the problem for points that are not near the interface. For our problem this means using the
5-point scheme (Figure 2.1(a)) at any point in the domain for which the stencil does not cross
the interface. These points will be referred to as regular points. At the other grid points,
termed irregular points, information about the problem is used to derive a special finite dif-
ference equation. The irregular points for the sample grid in Figure 2.3 are marked.

We will use a slight variation of the original IIM that preserves the maximum principle
[3]. The aim is to derive a finite difference equation at an irregular point (xi, y j) such as the
following:

9∑
k=1

ckUk = fi, j (3.2)

where Uk are the unknown solution values at the grid points in the standard compact 9-point
stencil shown in Figure 3.2(a), ck are the coefficients to be determined, and fi, j = f (xi, y j).
The derivation of the scheme is as follows:

1. Express the solution at all points in the stencil as a Taylor series centered about some
point on the interface.

2. Determine interface relations for the solution u and its derivatives.
3. Determine the local truncation error using the interface relations to express every-

thing in terms of quantities from one side of the interface.
4. Determine the system of equations for the coefficients that must be satisfied to elim-

inate the leading order terms.
5. Solve a least squares optimization problem to find the coefficients ck.

θ
x

y ξ

η

(xi, yj)

(x∗, y∗)
Ω−

Ω+

F. 3.1. Local coordinate system.

We first require a point on the interface about which to write the Taylor series. We
will assume there exists a unique point closest to (xi, y j) and call this point (x∗, y∗). For
the purposes of writing the interface relations, it is convenient to work in a local coordinate
system defined by the normal and tangential directions of the interface at the point (x∗, y∗).
This coordinate transformation is given by:

ξ = (x − x∗) cos θ + (y − y∗) sin θ
η = −(x − x∗) sin θ + (y − y∗) cos θ

where θ is the angle between the x-axis and the normal direction ξ as shown in Figure 3.1.

B.A. Vanderlei and M.M. Hopkins 119

(xi, yj)

Ω−

Ω+

(a) 9 point stencil

(xi, yj)

Ω−

Ω+

(b) 21 point stencil

F. 3.2. Stencils used for Lh and L̃h at irregular point (xi, y j).

There are two interface conditions we wish to express in local coordinates, a continuity
condition and a jump specified in the normal derivative:

u+ = u− (3.3)
(βun)+ = (βun)− (3.4)

Note that these conditions are derived directly from (3.1).
We will express the interface locally as ξ = χ(η). Note that at the point (x∗, y∗) we have

η = 0 and χ(0) = 0. Also if the interface is smooth at (x∗, y∗), χ′(0) = 0. The continuity
condition is now u+(χ(η), η) = u−(χ(η), η). One may now differentiate this condition with
respect to η and, after evaluating at (x∗, y∗), obtain:

u+η = u−η

Differentiating once more with respect to η and evaluating at (x∗, y∗) gives:

u+ηη + χ
′′u+ξ = u−ηη + χ

′′u−ξ

Next we rewrite the condition on the normal derivative in local coordinates. The normal
derivative is given by:

u±n =
1√

1 + χ′2
(u±ξ − u±ηχ

′)

Substituting this representation into (3.4) gives us the relation:

β+u+ξ = β
−u−ξ

As with the tangential condition, one may differentiate this relation with respect to η and
evaluate at (x∗, y∗), which gives:

β+(u+ξη − u+ηχ
′′) = β−(u−ξη − u−ηχ

′′)

In order to get the final relation needed we use the fact that (3.1) is unchanged by the change
of coordinates, and the assumed continuity of f , which means that f + = f −. The final relation
then is:

β+(u+ξξ + u+ηη) = β
−(u−ξξ + u−ηη)

120 Error Estimation for Immersed Interface Solutions

In preparation of expressing the truncation error in terms of quantities from only one
side of the interface we define ρ = β−/β+ and rewrite the above conditions to give all plus
quantities in terms of minus quantities:

u+ = u−

u+η = u−η
u+ξ = ρu−ξ (3.5)

u+ξη = ρu−ξη + (1 − ρ)u−ηχ
′′

u+ηη = u−ηη + (1 − ρ)u−ξ χ
′′

u+ξξ = ρu−ξξ + (ρ − 1)u−ηη + (ρ − 1)u−ξ χ
′′

With all interface relationships in place, we are ready to write down the truncation error
of the special scheme at irregular point (xi, y j).

Ti, j =

9∑
k=1

[
cku(ξk, ηk)

]
− fi, j

We next expand u at the grid points in a Taylor series about (x∗, y∗):

u(ξk, ηk) = u± + ξku±ξ + ηku±η +
1
2
ξ2

k u±ξξ +
1
2
η2

ku±ηη + ξkηku±ξη + O(h3)

Again we also note that fi, j = f (x∗, y∗) + O(h). We now define index sets K± by:

K± = {k : (ξk, ηk) ∈ Ω±}

and then write Ti, j as:

Ti, j = a1u− + a2u+ + a3u−ξ + a4u+ξ + a5u−η + a6u+η + a7u−ξξ + a8u+ξξ+

a9u−ηη + a10u+ηη + a11u−ξη + a12u+ξη − f (x∗, y∗) + O(h)

where

a1 =
∑
k∈K−

ck a2 =
∑
k∈K+

ck

a3 =
∑
k∈K−

ckξk a4 =
∑
k∈K+

ckξk

a5 =
∑
k∈K−

ckηk a6 =
∑
k∈K+

ckηk

a7 =
1
2

∑
k∈K−

ckξ
2
k a8 =

1
2

∑
k∈K+

ckξ
2
k

a9 =
1
2

∑
k∈K−

ckη
2
k a10 =

1
2

∑
k∈K+

ckη
2
k

a11 =
∑
k∈K−

ckξkηk a12 =
∑
k∈K+

ckξkηk

B.A. Vanderlei and M.M. Hopkins 121

We now use the interface relations (3.5) to replace all plus quantities in Ti, j with minus quan-
tities and replace f (x∗, y∗) with β−(u−ξξ + u−ηη). Collecting terms gives:

Ti, j = (a1 + a2)u− + (a3 + ρa4 + (ρ − 1)a8χ
′′ + (1 − ρ)a10χ

′′)u−ξ
+ (a5 + a6 + (1 − ρ)a12χ

′′)u−η + (a7 + ρa8 − β
−)u−ξξ

+ (a9 + a10 + (ρ − 1)a8 − β
−)u−ηη + (a11 + ρa12)u−ξη + O(h)

It is enough to achieve first order accuracy at the irregular points in order to recover second
order global accuracy in the solution [3]. In order to force Ti, j to be first order the coefficients
must satisfy the following six equations:

a1 + a2 = 0 a3 + ρa4 + a8(ρ − 1)χ′′ + a10(1 − ρ)χ′′ = 0
a5 + a6 + a12(1 − ρ)χ′′ = 0 a7 + ρa8 = β

−

a9 + a10 + a8(ρ − 1) = β− a11 + ρa12 = 0

The final step is to solve an optimization problem for the 9 unknown coefficients subject to
the 6 constraints just derived. We minimize the difference between the ck’s and the standard
coefficients (Figure 2.1(a)) in the least squares sense.

3.2. Higher Order Discretization. We next describe the construction of L̃h, the higher
order version of the discretization just described. As in the Poisson problem test case we
will use the wide 9-point stencil (Figure 2.1(b)) to achieve a fourth order truncation error at
regular points. We follow the same methodology as before to derive the high order scheme
for the irregular points but include more terms in the series expansions.

The usual idea to achieve a higher order truncation error for the irregular points is to
force the next order terms in the series expansion to be zero. There are 4 third order terms, so
we expect to have 10 equations total. Experimentation has shown that the stencil of 21 points
shown in Figure 3.2(b) yields the most consistent solution to the optimization problem. Using
fewer points tends to degrade the results when the discontinuities in β become large.

The first component necessary is a set of interface relations for the third order derivatives
so that all plus quantities may be written in terms of minus quantities. To this end we differ-
entiate the continuity and normal derivative conditions once more with respect to η (along the
interface) and evaluate at the point (x∗, y∗) This yields the following two conditions for uξηη
and uηηη in terms of the lower order derivatives:

β+(u+ξηη − 2u+ηηχ
′′ + u+ξξχ

′′) = β−(u−ξηη − 2u−ηηχ
′′ + u−ξξχ

′′)

u+ηηη + 3u+ξη = u−ηηη + 3u−ξη

(Note that we neglected terms involving higher order derivatives of χ since χ′′′ = 0 for this
particular geometry.)

To get the other two condition needed we differentiate (3.1) with respect to ξ and η and
again assume sufficient regularity of f to get the following conditions.

β+(u+ξξξ + u+ξηη) = β
−(u−ξξξ + u−ξηη)

β+(u+ξξη + u+ηηη) = β
−(u−ξξη + u−ηηη)

These relations allows us to write uξξξ and uξξη in terms of the other third derivatives.

122 Error Estimation for Immersed Interface Solutions

The truncation error is again:

Ti, j =

21∑
k=1

[
cku(ξk, ηk)

]
− fi, j

= a1u− + a2u+a3u−ξ a4 + u+ξ + a5u−η + a6u+η + a7u−ξξ + a8u+ξξ
+ a9u−ηη + a10u+ηη + a11u−ξη + a12u+ξηa13u−ξξξ + a14u+ξξξ
+ a15u−ηηη + a16u+ηηη + a17u−ξξη + a18u+ξξη + a19u−ξηη + a20u+ξηη
+ −[f (x∗, y∗) + ξ1 fξ(x∗, y∗) + η1 fη(x∗, y∗)] + O(h2)

where

a13 =
1
6

∑
k∈K−

ckξ
3
k a14 =

1
6

∑
k∈K+

ckξ
3
k

a15 =
1
6

∑
k∈K−

ckη
3
k a16 =

1
6

∑
k∈K+

ckη
3
k

a17 =
1
2

∑
k∈K−

ckξ
2
kηk a18 =

1
2

∑
k∈K+

ckξ
2
kη

a19 =
1
2

∑
k∈K−

ckξkη
2
k a20 =

1
2

∑
k∈K+

ckξkη
2

Again we replace all plus quantities with minus quantities and replace fξ and fη with β−(u−ξξξ+
u−ξηη) and β−(u−ξξη + u−ηηη) respectively. Gathering the terms and rewriting gives:

Ti, j = (a1 + a2)u−

+ (a3 + ρa4 + (ρ − 1)a8χ
′′ + (1 − ρ)a10χ

′′ + 3a14(ρ − 1)χ′′2 + 3a20(1 − ρ)χ′′2)u−ξ
+ (a5 + a6 + (1 − ρ)a12χ

′′ + 3a16(ρ − 1)χ′′2 + 3a18(1 − ρ)χ′′2)u−η
+ (a7 + ρa8 − β

−)u−ξξ
+ (a9 + a10 + (ρ − 1)a8 + 3a14(ρ − 1)χ′′ + 3a20(1 − ρ)χ′′ − β−)u−ηη
+ (a11 + ρa12 + 3a16(1 − ρ)χ′′ + 3a18(ρ − 1)χ′′)u−ξη
+ (a13 + ρa14 − β

−ξ1)u−ξξξ + (a15 + a16 + a18(ρ − 1) − β−η1)u−ηηη
+ (a17 + ρa18 − β

−η1)u−ξξη + (a19 + ρa20 − β
−ξ1)u−ξηη + O(h2)

Now we may write the following system of equations which should be satisfied by the

B.A. Vanderlei and M.M. Hopkins 123

coefficients ck:

a1 + a2 = 0

a3 + ρa4 + a8(ρ − 1)χ′′ + a10(1 − ρ)χ′′ + 3a14(ρ − 1)χ′′2 + 3a20(1 − ρ)χ′′2 = 0

a5 + a6 + a12(1 − ρ)χ′′ + 3a16(ρ − 1)χ′′2 + 3a18(1 − ρ)χ′′2 = 0
a7 + ρa8 = β

−

a9 + a10 + a8(ρ − 1) + 3a14(ρ − 1)χ′′ + 3a20(1 − ρ)χ′′ = β−

a11 + ρa12 + 3a16(1 − ρ)χ′′ + 3a18(ρ − 1)χ′′ = 0
a13 + ρa14 = β

−ξ1

a15 + a16 + a18(ρ − 1) = β−η1

a17 + ρa18 = β
−η1

a19 + ρa20 = β
−ξ1

As in §3.1 we now minimize the difference between ck’s and the coefficients used at regu-
lar points (Figure 2.1(b)), subject to the derived constraints. Note that (ξ1, η1) are the local
coordinates of the point (xi, y j).

4. Error Estimates for the Interface Problem. We take as our test problem (3.1) with
f = −π2 cos (πr) − π sin (πr)/r, β− = 1, and β+ = B, where r =

√
x2 + y2. The analytic

solution is then u− = cos (πr) and u+ = cos (πr)/B. Figures 4.1 and 4.2 show the results for
solutions computed on uniform NxN grids with B = 10 and B = 100 respectively. We see
that the estimates are not only reliable for each of the grid sizes, but the difference between
the error and the estimate is converging to zero. Note that for this problem the error in the
estimate (discrepancy between the error and the estimate) converges to zero at the same rate
as the true error. In the case of the continuous Poisson problem this error in the estimate
converged to zero faster than the error. This is not unexpected if we recall that part of the
error in the estimate is due to the size of τ̃h, the local truncation error of the discretization
used to compute the perturbation. For the Poisson problem ||τh||∞ = O(h2) and ||τ̃h||∞ = O(h4)
while for the interface problem ||τh||∞ = O(h) and ||τ̃h||∞ = O(h2)

We also compute the effectivity index of the estimates defined as:

κ =
||uh − vh||

||uR − uh||

These results are shown in Table 4.1. The discrete version of the L2 norm that we compute
here is the following:

||uh||L2
h
=

 N∑
i=1

N∑
j=1

uh(xi, y j)∆x∆y


1/2

We see that estimates of both the max norm and the L2
h norm are reasonable for all grid sizes.

The cost in producing these estimates is primarily a second solve of the associated linear
system at the same grid size. One must consider however that some of the information from
the solution of the original problem may be reused. For example if an iterative solver is being
used, the original solution uh can be used as the initial guess. If a direct solve involving
a factorization of the matrix is used, that factorization can be reused for the second solve.
Table 4.2 shows the runtimes for the case B = 10. We observe that as the size of the problem

124 Error Estimation for Immersed Interface Solutions

1e-06

1e-05

1e-04

0.001

0.01

16 32 64 128 256 512
N

||u − uh||∞×

×

×

×

×

×
||uh − vh||∞

+

+

+

+

+

+
||(u − uh) − (uh − vh)||∞

?

?

?

?

?

?

F. 4.1. Error in estimates made for interface problem with B = 10.

T 4.1
Effectivity indexes

B = 10 B = 100
N || · ||∞ || · ||L2

h
|| · ||∞ || · ||L2

h

20 0.996 1.291 0.935 0.958
40 0.939 1.337 0.935 0.934
80 0.842 1.071 0.958 0.943

160 0.866 1.026 0.953 0.938
320 0.868 1.025 0.943 0.927

increases, the time taken to compute the error estimate becomes small relative to the time
to compute the original solution. This is due to the fact that while the problems are small,
the majority of the work goes into constructing the linear system (solving the optimization
problems at irregular points.) As the problem size grows this cost becomes negligible relative
to the cost of solving the system. Table 4.3 shows us just the time taken to solve the underlying
linear system. As expected we see in all cases that it takes less time to solve the nearby
problem than the original due to the improved initial guess.

T 4.2
Runtimes (in seconds) for the case B = 10.

N Compute Solution Compute Estimate Estimate time
Solution time

Estimate time
Total time

20 1.07 4.60 4.34 0.813
40 2.67 8.95 3.35 0.770
80 14.0 22.5 1.61 0.616

160 528 209 0.395 0.284

5. Conclusions and Future Directions. We have computed reliable estimates of the
numerical error in finite difference solutions of an elliptic problem with discontinuous coef-

B.A. Vanderlei and M.M. Hopkins 125

1e-06

1e-05

1e-04

0.001

0.01

16 32 64 128 256 512
N

||u − uh||∞×

×

×

×

×

×
||uh − vh||∞

+

+

+

+

+

+
||(u − uh) − (uh − vh)||∞?

?

?

?

?

?

F. 4.2. Error in estimates made for Interface problem with B = 100.

T 4.3
GMRES solvetimes (in seconds) for the case B = 10.

N Solve Problem Solve Nearby Problem
20 0.115 0.098
40 0.808 0.428
80 10.1 5.3

160 517 169

ficients. The numerical solutions were obtained using the Immersed Interface Method and
the estimates were computed using a procedure based on the Method of Nearby Problems.
Future work will see this method extended to more general problems solved by IIM, such as
the addition of singular source terms. One dimensional results indicate that a modification of
our technique will be successful for such problems. We also wish to investigate the use of a
compact high order scheme as the operator L̃. Such fourth order schemes have been derived
and could potentially improve on the current estimates.

REFERENCES

[1] M. H  C. R, Introducing the method of nearby problems, ECCOMAS, (2004).
[2] R. LV  Z. L, The immersed interface method for elliptic equations with discontinuous coefficients and

singular sources., SIAM J. Numerical Analysis, 31 (1994), pp. 1019–1044.
[3] Z. L K. I, Maximum principle preserving schemes for interface problems with discontinuous coefficients,

SIAM J. Scientifice Computation, 23 (2001), pp. 339–361.
[4] A. R, Discretization error estimation using the method of nearby problmes: One-dimensional cases, master’s

thesis, Aerospace Engineering Dept. Auburn University, 2005.
[5] A. R, C. R,  M. H, On the generation of exact solution using the method fo nearby problems,

AIAA, (2005).
[6] C. R  M. H, Discretization error estimates using exact solutions to nearby problems, AIAA, 0629

(2003).
[7] C. R, A. R,  M. H, Estimation of discretization errors using the method of nearby problems,

AIAA, 45 (2007), pp. 1232–1243.
[8] H. S, The defect correction principle, Numerishce Mathematik, 42 (1978), pp. 42–142.

CSRI Summer Proceedings 2007 126

VERIFICATION OF LOW-MACH NUMBER COMBUSTION CODES USING THE
METHOD OF MANUFACTURED SOLUTIONS

LEE SHUNN∗ AND PATRICK M. KNUPP†

Abstract. Many computational combustion models rely on tabulated constitutive relations to close the system of
equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications
on the convergence and accuracy of simulation codes are not well understood. In this report, the effects of tabulated
state-relationships on the computational performance of low-Mach number combustion codes are explored using
the method of manufactured solutions (MMS). The manufactured solutions are implemented in CDP, the multi-
physics hydrodynamics code developed at Stanford University. Linear interpolation of the equation-of-state degrades
convergence and introduces spurious fluctuations in the flow variables. In addition to verifying the order-of-accuracy
of the code, the MMS problems help highlight robustness issues in existing variable-density flow-solvers.

1. Introduction. The term verification, when applied to a computer code, describes the
process of demonstrating that the code correctly solves its governing mathematical equations.
A code that has been properly verified, therefore, is in likelihood free of programming errors
which affect the theoretical order-of-accuracy of the numerical algorithm. As such, code
verification is a integral step in building confidence in the predictive capabilities of simulation
software.

Over the past several decades, the complexity of computational algorithms in simulation
codes has grown in response to demands for high-fidelity simulations in science and engi-
neering. State-of-the-art simulation codes often involve complex exchanges of information
amongst various physics modules, each of which may solve different equations using differ-
ent algorithms on different grid topologies. As simulation codes become more sophisticated,
thorough verification becomes increasingly challenging and time consuming, yet also more
essential.

The method of manufactured solutions (MMS) is a general procedure that can be used
to construct analytic solutions to the differential equations that form the basis of a simulation
code [21, 20, 22, 11, 13, 23]. The resulting solutions, while not necessarily physically rele-
vant, can be used as benchmark solutions for verification tests. The accuracy of the code is
gauged by running the test problems on systematically refined grids and comparing the out-
put with the analytical manufactured solution. The behavior of the error can then be exam-
ined against the theoretical order-of-accuracy inherent in the code’s numerical discretizations.
Thus, a verification test using MMS provides an unambiguous result as to whether or not the
algorithm is implemented correctly. MMS has been successfully applied in a variety of appli-
cations including fluid dynamics [24, 1], heat transfer [2, 3], fluid-structure interaction [27],
even turbulence modeling [4].

In this work, attention is focused on hydrodynamics codes amenable to low-Mach num-
ber combustion where acoustic effects are unimportant. In this framework, a variable-density
formulation of the Navier-Stokes equations is often used due to its computational efficiency
relative to fully compressible formulations. In the variable-density equations, the pressure and
density are formally decoupled by defining the density through an equation-of-state (EOS)
expressed in terms of transported scalars. The EOS may be given by an analytic expression,
or as is common for complex reactive systems, it may be precomputed and tabulated as a
function of the scalars.

Tabulated state-equations are heavily used in many popular combustion models. Ex-
amples include laminar flamelet models [14, 15], conditional moment closure (CMC) meth-

∗Stanford University, Mechanical Engineering, shunn@stanford.edu
†Sandia National Laboratories, pknupp@sandia.gov

L. Shunn and P.M. Knupp 127

ods [10], and some transported PDF methods [19]. These combustion models are used in
a variety of combustion codes, targeting applications that include design and optimization
of engines and power systems, prediction of pollutant formation in combustion devices, and
modeling and prediction of fires. While validation studies of combustion codes are routinely
performed, the application of systematic verification studies is less common. In particular,
the ramifications of tabulated state-relationships on the convergence and accuracy of com-
bustion codes has not been widely investigated. As the EOS in typical combustion systems
is multi-dimensional and highly non-linear, its implications on code performance are not
straightforward.

The objective of this work is to use MMS to explore the effects of tabulated constitutive
relationships on the computational performance of low-Mach number combustion codes. Var-
ious example problems are developed and applied, progressing from simple one-dimensional
configurations to examples involving higher dimensionality and solution-complexity. The
new MMS problems can be used to complement existing verification tests that are suitable
for the combustion codes described above. In addition to strict code verification, the MMS
problems serve to highlight certain robustness issues and weaknesses in existing algorithms
for variable-density flows.

2. Governing equations. The simulations in this report are performed using the un-
structured large-eddy simulation (LES) code CDP 1. The LES methodology recognizes that
in many practical simulations, the governing equations admit solutions that cannot be resolved
on affordably-sized grids. A filter (denoted by an overbar) is therefore introduced to separate
the flow into resolved and unresolved scales. The large scales of motion are directly simu-
lated while the smaller, dissipative scales are modeled. All field variables are decomposed
into resolved and unresolved (subgrid or subfilter-scale) components using either a Reynolds
decomposition

ρ = ρ̄ + ρ′ (2.1)

or a Favre (density-weighted) decomposition:

ui = ũi + u′′i , ũi = ρui/ρ̄. (2.2)

Filtering the continuum Navier-Stokes equations yields equations for the resolved-scale vari-
ables: density ρ̄, pressure p̄, velocity ũi, and transported scalars φ̃k.

The combustion systems of interest in this work are characterized by relatively low Mach
numbers (Ma < 0.3), hence, the assumption of negligible compressibility and acoustic effects
is generally valid. The density is allowed to vary with the local temperature and species
concentration (transported scalars), but is not a function of the local pressure.

Under these simplifications, variable-density reacting flows are described by the follow-
ing conservation equations for mass, momentum, and species, combined with a suitable EOS:

∂ρ̄

∂t
+
∂ρ̄ũ j

∂x j
= ¯̇S ρ̄ (2.3)

∂ρ̄ũi

∂t
+
∂ρ̄ũ jũi

∂x j
= −

∂p̄
∂xi
+

∂

∂x j

(
2µ̄S̃ i j − qi j

)
+ ¯̇S ũi (2.4)

1CDP is named after Dr. Charles David Pierce (1969-2002)

128 Verification of combustion codes using MMS

∂ρ̄φ̃k

∂t
+
∂ρ̄ũ jφ̃k

∂x j
=

∂

∂x j

(
ρ̄α̃k

∂φ̃k

∂x j
− qφ̃k j

)
+ ¯̇S φ̃k

(2.5)

ρ̄ = f (φ̃1, φ̃2, ...). (2.6)

The resolved-scale stress is given by

S̃ i j =
1
2

(
∂ũi

∂x j
+
∂ũ j

∂xi

)
−

1
3
δi j
∂ũk

∂xk
, (2.7)

and the subgrid (or subfilter) stress qi j and scalar fluxes qφ̃k j are modeled using the eddy-
viscosity approach of Smagorinsky [26]:

qi j = −2µtS̃ i j where µt = ρ̄C ∆2|S̃ |. (2.8)

The unknown coefficient C in (2.8) is closed using the dynamic procedure [6, 12, 7, 16]. In
all simulations reported here, the codes are run in so-called “DNS” mode, wherein all subgrid
models were disabled.

3. Numerical method. The computer code CDP uses a collocated, unstructured version
of the algorithm of Pierce and Moin [17, 18]. This algorithm employs a temporally-staggered
variable arrangement in which velocity components are staggered in time with respect to den-
sity and other scalar variables. The equations are spatially discretized using low-dissipation,
node-based finite-volume operators developed by Ham et al. [8]. The variables are implicitly
advanced in time using a fractional-step method, and an iterative approach is used at each
time level to repair linearization errors and enhance stability. The major features of the iter-
ation process at each time step are listed below. Here the superscript m is used to denote the
inner-iteration number.

1. The scalar equation(s) (2.5) are advanced in time. This yields (ρφ)m+1, from
which a provisional estimate for φ is obtained by φ̂ = (ρφ)m+1/ρm.

2. The momentum equations (2.4) are advanced to obtain provisional velocities:
ûi.

3. The provisional scalar values are used to evaluate the density from the EOS:
ρm+1 = f (φ̂).

4. The updated density is used to correct the scalar(s) to ensure primary conserva-
tion: φm+1 = (ρφ)m+1/ρm+1.

5. A constant-coefficient Poisson equation is solved for pressure, and the result is
used to correct the velocity field to discretely conserve mass.

6. The process is repeated from step 1 and continued until convergence.
The linearized scalar and momentum equations (steps 1-2) are solved using a Jacobi

method, and the Poisson solve (step 5) is accomplished using the HYPRE algebraic multigrid
solver [5, 9]. Linear stability analysis indicates that the iterative approach outlined above
is second-order accurate when at least two inner-iterations are employed [17]. Additional
iterations may improve the stability of the scheme, but do not increase the order of accuracy.
Formal verification of the second-order behavior of the algorithm requires convergence of the
system at each time step.

L. Shunn and P.M. Knupp 129

4. Example problems. It has been noted that because code verification is a purely math-
ematical exercise, manufactured solutions need not be “realistic” [22]. While this is inar-
guably true, it also does not acknowledge the utility of well-crafted manufactured solutions
in identifying the vulnerabilities and strengths of a computational algorithm. For instance,
a manufactured solution that is suggestive of some elementary physics, provides not only a
statement about the code’s order-of-accuracy, but also gives a preview of how the code might
perform in more complex problems where the mimicked physics are pervasive.

In this spirit, we introduce example MMS problems which attempt to illustrate “canoni-
cal” phenomena in variable-density flows. The examples are constructed such that they identi-
cally obey a subset of the governing physics without source terms (i.e. conservation of mass),
and apply manufactured sources to satisfy the remaining conservation laws. Mass conserva-
tion is afforded preferential treatment in these examples due to its central role in the solution
algorithm presented in Section 3. The resulting manufactured solutions attempt to balance
simplicity with realism in an effort to understand how the code performs in “representative”
scenarios.

The verification problems in this report are based on the EOS for isothermal binary mix-
ing between miscible fluids:

ρ(φ) =
(
φ

ρ1
+

1 − φ
ρ0

)−1

. (4.1)

Although this EOS is simple, it is deceptively non-trivial. Large density ratios result in ex-
tremely non-linear behavior that can challenge variable-density solvers as much as the reac-
tive state-equations associated with combustion chemistry. The scalar variable φ in (4.1) is
known as the mixture fraction and assumes values ranging from 0 to 1. A similar mixture
fraction variable is ubiquitously used in combustion modeling to describe the “mixedness”
between fuel and oxidizer. The quantities ρ0 and ρ1 are the pure component densities, i.e.
ρ0 = ρ(φ = 0) and ρ1 = ρ(φ = 1).

The first example problem is a one-dimensional manufactured solution reflective of bi-
nary diffusive mixing:

φ(x, t) =
exp(−k1t) − cosh(w0x exp(−k2t))

exp(−k1t)
(
1 − ρ0

ρ1

)
− cosh(w0x exp(−k2t))

ρ(x, t) =
(
φ(x, t)
ρ1

+
1 − φ(x, t)

ρ0

)−1

(4.2)

u(x, t) = 2k2 exp(−k1t)
ρ0 − ρ1

ρ(x, t)

 ûx
û2 + 1

+
(k1

k2
− 1)(arctan û − π

4)

w0 exp(−k2t)


where û = exp(w0x exp(−k2t)) and w0, k1, and k2 are constant parameters. Note that (4.2)
satisfies the continuous continuity equation (2.3) with ¯̇S ρ̄ = 0, but produces a non-zero source
term in the scalar transport equation (2.5). No source term is specified in the momentum
equation, instead the pressure is allowed to compensate to satisfy (2.4) with ¯̇S ũi = 0. If
interested, one could solve for the analytical pressure distribution by integrating (2.4) with
respect to x. The relevant manufactured scalar source term is computed by substituting (4.2)
into (2.5) and solving for ¯̇S φ̃k

. The spatio-temporal evolution of (4.2) is shown in Figure 4.1
for the parameter values in Table 4.1. The computational domain for this problem is 0 ≤ x ≤ 2

130 Verification of combustion codes using MMS

0 0.5 10

0.5

1

 x

 v
el

oc
ity

, u
(x

,t)

0 0.5 10

0.5

1

 x

 s
ca

la
r,

φ(
x,

t)

0 0.5 1−5

0

5

10

15

20

 x

 s
ca

la
r s

ou
rc

e,
 S

φ(x
,t)

F. 4.1. 1-D manufactured solution (l to r): u(x, t), φ(x, t), ¯̇S φ(x, t).

T 4.1
Parameter values for 1-D problem.

parameter value
ρ0 20
ρ1 1
k1 4
k2 2
w0 50

ρ̄α̃φ = µ̄ 0.03

T 4.2
Parameter values for 2-D problem.

parameter value parameter value
ρ0 20 a 1/5
ρ1 1 b 20
k 5 u f 1/4
ω 1 v f 0
ρ̄α̃φ 0.001 µ̄ 0.001

and 0 ≤ t ≤ 1. A similar problem was investigated in [25], although not within the framework
of MMS.

A second MMS problem involves a two-dimensional corrugated front with advection and
diffusion:

φ(x, y, t) =
1 + tanh(bx̂ exp(−ωt))

(1 + ρ0
ρ1

) + (1 − ρ0
ρ1

) tanh(bx̂ exp(−ωt))

ρ(x, y, t) =
(
φ(x, y, t)
ρ1

+
1 − φ(x, y, t)

ρ0

)−1

u(x, y, t) =
ρ1 − ρ0

ρ(x, y, t)

(
− ωx̂ +

ωx̂ − u f

exp(2bx̂ exp(−ωt)) + 1
(4.3)

+
ω log(exp(2bx̂ exp(−ωt)) + 1)

2b exp(−ωt)

)
v(x, y, t) = v f

p(x, y, t) = 0

where x̂(x, y, t) = u f t − x + a cos(k(v f t − y)) and a, b, k, ω, u f , and v f are constant parameters.
Equation (4.3) satisfies the continuous continuity equation (2.3) with ¯̇S ρ̄ = 0. Non-zero
source terms appear in the x and y momentum equations (2.4) and the scalar transport equation
(2.5). The initial density field described by (4.3) is shown in Figure 4.2 given the parameter
values in Table 4.2. The computational domain for this problem is −1 ≤ x ≤ 2, −1/2 ≤ y ≤
1/2, and 0 ≤ t ≤ 1.

In order to focus on the effects of density, the viscosity µ̄ and the “dynamic” diffusivity
ρ̄α̃k in equations (2.4) and (2.5) are assumed constant in both the one- and two-dimensional
MMS examples.

L. Shunn and P.M. Knupp 131

F. 4.2. 2-D manufactured solution: ρ(x, y, t) at t = 0 (red: ρ = 20, blue: ρ = 1).

0 0.2 0.4 0.6 0.8 110−5

10−4

10−3

10−2

10−1

time

m
ax

 e
rro

r:
u(

x,
t)

 nx=64
nx=128
nx=256
nx=512
nx=1024

F. 5.1. Maximum error in velocity u(x, t) versus
time for 1-D manufactured solution.

0 0.2 0.4 0.6 0.8 110−4

10−2

100

102

time

m
ax

 e
rro

r:
ρ(

x,
t)

 nx=64
nx=128
nx=256
nx=512
nx=1024

F. 5.2. Maximum error in density ρ(x, t) versus
time for 1-D manufactured solution.

5. Results. A spatial grid-refinement study using the one-dimensional example problem
(4.2) was conducted to assess the convergence properties of CDP’s numerics. Computational
grids consisting of 64, 128, 256, 512, and 1024 control volumes were used. A time step of
∆t = 0.00125 was applied in all cases, leading to CFL numbers in the range 0.048 to 0.764.
The boundary conditions at x = 0 were u = 0 and ∂φ/∂x = 0. An “outlet” boundary condition
was applied at x = 2, a location sufficiently removed from the action so as to not to introduce
significant errors in the solution. The velocity, pressure, and scalar values were solved from
equations (2.3)-(2.5), and the density was evaluated using the analytic function (4.1) and the
instantaneous scalar field. The convergence tolerance for solving transport equations and the
pressure Poisson equation was 1 × 10−8. Inner iterations at each time step were continued
until the maximum density difference between iterations |ρm+1 − ρm| was less than 1 × 10−8.

The maximum error (L∞-norm) in u(x, t), φ(x, t), and ρ(x, t) was monitored throughout
the simulation and shows second-order convergence for all variables with respect to ∆x. De-
tailed convergence results of the exercise are tabulated in Table 5.1. Plots of the maximum
error versus time for u(x, t) and ρ(x, t) are shown in Figures 5.1 and 5.2. Note that the er-
ror smoothly decays with time in each simulation, as the flow features diffuse and become
easier to resolve. As part of a separate temporal-refinement study (not shown here) the time
step was halved to ∆t = 0.000625 and the simulations were repeated on the nx = 1024 grid.
The results were almost indistinguishable, with a maximum difference on the order of 10−6.
This suggests that the results are “converged” in a temporal sense, and that time errors are
subservient to spatial errors at these resolutions.

In order to evaluate the effect of EOS tabulation on code performance, a refinement study
was conducted in which the EOS (4.1) was interpolated linearly from successively-refined

132 Verification of combustion codes using MMS

T 5.1
1-D manufactured solution: spatial grid refinement.

no. of max error observed max error observed max error observed
points u(x, t) order φ(x, t) order ρ(x, t) order

64 4.4897e-02 3.3918e-02 1.3806e+00
128 8.7491e-03 2.36 6.8977e-03 2.30 2.0429e-01 2.76
256 2.2050e-03 1.99 2.1180e-03 1.70 2.5377e-02 3.01
512 6.1929e-04 1.83 5.9749e-04 1.83 7.6128e-03 1.74
1024 1.6394e-04 1.92 1.5882e-04 1.91 2.2636e-03 1.75

T 5.2
Tabulated EOS resolutions and errors.

no. of max error avg error
points ρ(φ) ρ(φ)

21 1.6118e+00 7.3605e-02
31 9.4647e-01 3.3885e-02
51 4.4249e-01 1.2463e-02
101 1.3878e-01 3.1475e-03
201 3.9362e-02 7.8898e-04
401 1.0521e-02 1.9738e-04

grids of uniformly-spaced points in φ-space. A summary of the tabulation resolutions and
their associated errors can be found in Table 5.2. Interpolation of the EOS at the coarsest
resolutions in Table 5.2 would not be unreasonable in many engineering calculations where
property tables are multi-dimensional (typically 3-4) and memory is limited.

The simulations were effected on a grid of 1024 control volumes with a time step of
∆t = 0.00125. The boundary conditions and solver convergence limits were identical to the
spatial grid-refinement study above. The full convergence results are tabulated in Table 5.3,
and plots of the temporal evolution of the error for u(x, t) and ρ(x, t) are shown in Figures 5.3
and 5.4. The “nφ = ∞” label indicates results using the analytic or non-interpolated EOS.

The data clearly indicate a degradation of accuracy when using a tabulated EOS. Veloc-
ity convergence is tending towards first-order behavior, while scalar and density convergence
appears to be closer to second-order (with respect to ∆φ). These trends, however, are spec-
ulative at best as the data are not well converged, even with 401 interpolation points in the
EOS. It is likely that scalar convergence outperforms velocity because of the manufactured
source term in (2.5). In the simulations, the scalar source was evaluated as a function of x
and t, rather than u(x, t), φ(x, t), and ρ(x, t). The source term, therefore, implicitly used the
analytic EOS and was partially shielded from the influence of tabulation errors. It is not sur-
prising, therefore, that scalar convergence was less affected than velocity, especially when
considering the relative strength of the scalar source term in this example (see Figure 4.1).

In addition to poor convergence rates, it is clear that EOS interpolation errors dramati-
cally affect the character of the error in the field variables. The smooth error decay exhibited
in Figure 5.1 is replaced by the unsteadiness apparent in Figure 5.3. These numerical fluc-
tuations result from the tight coupling between density, velocity, and pressure in low-Mach
number projection methods. Density errors that arise from the tabulation, are readily trans-
lated into velocity errors as the pressure acts to “correct” changes in the global mass-balance.
The velocity and density in turn influence the evolution of the scalar field in a non-linear
manner, adding further complexity. The end result is that small errors in the EOS evaluation

L. Shunn and P.M. Knupp 133

0 0.2 0.4 0.6 0.8 110−5

10−4

10−3

10−2

10−1

time

m
ax

 e
rro

r:
u(

x,
t)

nφ=21
nφ=31
nφ=51
nφ=101
nφ=201
nφ=401
nφ=∞

F. 5.3. Maximum error in velocity u(x, t) versus
time for 1-D manufactured solution.

0 0.2 0.4 0.6 0.8 110−4

10−2

100

102

time

m
ax

 e
rro

r:
ρ(

x,
t)

nφ=21
nφ=31
nφ=51
nφ=101
nφ=201
nφ=401
nφ=∞

F. 5.4. Maximum error in density ρ(x, t) versus
time for 1-D manufactured solution.

T 5.3
1-D manufactured solution: EOS look-up table refinement.

no. of max error observed max error observed max error observed
points u(x, t) order φ(x, t) order ρ(x, t) order

21 3.0450e-02 5.4061e-02 1.7409e+00
31 1.8274e-02 1.31 2.8370e-02 1.66 1.0069e+00 1.41
51 9.2087e-03 1.38 1.1613e-02 1.79 4.6242e-01 1.56

101 3.5173e-03 1.41 3.2998e-03 1.84 1.4308e-01 1.72
201 2.0185e-03 0.81 9.6504e-04 1.79 4.0427e-02 1.84
401 9.2466e-04 1.13 3.4493e-04 1.49 1.0764e-02 1.92
∞ 1.6394e-04 1.5882e-04 2.2636e-03

can amplify and lead to large errors in the velocity and scalar fields.
The impact of a tabulated EOS has likewise been studied in the context of the two-

dimensional MMS problem (4.3). The full study is still in progress, however, preliminary
results are reported here. The computational grid comprises 600 × 200 hexahedral control
volumes and a uniform time step of ∆t = 0.005. Dirichlet boundary conditions were imposed
at x = −1 and y = ±1/2, and an “outlet” boundary condition was applied at x = 2. All
solvers and inner iterations were converged to a tolerance of 1 × 10−6 at all time steps and in
all simulations.

The time-evolution of the error is depicted in Figure 5.5. It should be noted that the
analytic-EOS solution (nφ = ∞), appears to still contain significant spatial error and should
be further refined. Despite this, definite trends are evident as the EOS grid is refined. First,
it appears that all variables converge to the nφ = ∞ solution when the EOS is sufficiently
refined. Second, velocity and pressure appear to be much more prone to spurious fluctuations
than density or its underlying scalar (not shown). The fluctuations tend to persist even for
very fine EOS grids. Third, for coarse interpolations of the EOS, errors tend to compound
with time, suggesting that uncontrolled EOS errors can have a dramatic effect on the temporal
development of the flow. Indeed, Figure 5.6 chronicles a steady departure of the numerical
solution from the manufactured solution when the EOS is coarsely interpolated. The numeri-
cal fluctuations induced by EOS interpolation errors undoubtedly find expression in the flow
variables on a macro-scale. This is readily visible in Figure 5.7, which shows the convective
outlet velocity, u(x = 2) for different EOS resolutions. Here, interpolation errors cause dra-
matic fluctuations about the exact value of 0.2375. The presence of these fluctuations, whose
genesis is entirely numerical, holds serious implications for subgrid modeling of combustion
and turbulence phenomena.

134 Verification of combustion codes using MMS

0 0.2 0.4 0.6 0.8 110!3

10!2

10!1

time

m
ax

 e
rro

r:
u(

x,
y,

t)

n
!
=21

n
!
=31

n
!
=51

n
!
=101

n
!
=201

n
!
=401

n
!
="

0 0.2 0.4 0.6 0.8 110!4

10!3

10!2

time

m
ax

 e
rro

r:
v(

x,
y,

t)

n
!
=21

n
!
=31

n
!
=51

n
!
=101

n
!
=201

n
!
=401

n
!
="

0 0.2 0.4 0.6 0.8 110!2

10!1

100

101

time

m
ax

 e
rro

r:
!(

x,
y,

t)

n
"
=21

n
"
=31

n
"
=51

n
"
=101

n
"
=201

n
"
=401

n
"
=#

0 0.2 0.4 0.6 0.8 110!4

10!2

100

102

time

m
ax

 e
rro

r:
p(

x,
y,

t)

n
!
=21

n
!
=31

n
!
=51

n
!
=101

n
!
=201

n
!
=401

n
!
="

F. 5.5. 2-D manufactured solution, maximum error. (clockwise from top left) u(x, y, t), v(x, y, t), p(x, y, t), ρ(x, y, t).

F. 5.6. 2-D manufactured solution, error in u(x, y, t). The left figures use analytic EOS-evaluations, and the
right figures use linearly-interpolated EOS-evaluations with nφ = 21. (top to bottom) t = 0, t = 0.33, t = 0.67, t = 1.
(red: uerr = 0.019, blue: uerr = −0.008)

L. Shunn and P.M. Knupp 135

0 0.2 0.4 0.6 0.8 10.215

0.22

0.225

0.23

0.235

0.24

time

ou
tle

t v
el

oc
ity

nφ=21
nφ=31
nφ=51
nφ=101
nφ=201
nφ=401
nφ=∞

F. 5.7. 2-D manufactured solution: convective outlet velocity u(x, y, t) at x = 2.

6. Conclusions. In this study, the Method of Manufactured Solutions was used to inves-
tigate the effects of tabulated state-equations on the convergence and accuracy of the multi-
physics hydrodynamics code CDP. Two MMS problems were constructed whose evolution is
reflective of some of the basic physics germane to combustion problems, namely: diffusive
mixing of species and convection of density fronts. Both of the MMS examples analytically
satisfy the source-free continuity equation, and use manufactured source terms to balance
the momentum and scalar transport equations. Grid refinement studies performed using the
MMS problems confirm the spatial convergence rate of CDP to be second-order when an an-
alytic EOS was used. Convergence of the flow variables to the exact solution was markedly
impaired when the EOS was linearly interpolated in φ-space. The MMS results indicate that
EOS interpolation errors introduce spurious numerical fluctuations in the flow variables, with
velocity and pressure being particularly vulnerable. These errors tend to accumulate with
time and can potentially alter the temporal evolution of the solution in variable-density flows.

REFERENCES

[1] R. B. B, C. C. O,  P. M. K, A manufactured solution for verifying CFD boundary conditions,
part III, in 36th AIAA Fluid Dynamics Conference, vol. 3, San Francisco, CA, June 2006, pp. 1966–
1982.

[2] T. A. B, Development of a grey nonlinear thermal radiation diffusion verification problem, Transac-
tions of the American Nuclear Society, 95 (2006), pp. 876–878.

[3] S. P. D, G. W, A. L-H, A. B,  J. S, Verification for multi-mechanics
applications, in 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Honolulu, HI, April 2007.

[4] L. E, M. H, A. H,  D. P, On the construction of manufactured solutions for one- and
two-equation eddy-viscosity models, Int. J. Num. Meth. Fluids, 54 (2007), pp. 119–154.

[5] R. D. F  U. M. Y, HYPRE: a library of high performance preconditioners, in Computational
Science - ICCS 2002 Part III, P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, eds.,
vol. 2331 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 632–641.

136 Verification of combustion codes using MMS

[6] M. G, U. P, P. M,  W. H. C, A dynamic subgrid-scale eddy viscosity model, Phys.
Fluids A, 3 (1991), pp. 1760–1765.

[7] S. G, T. S. L, P. M,  K. A, A dynamic localization model for large-eddy simulation of
turbulent flows, J. Fluid Mech., 286 (1995), pp. 229–255.

[8] F. H, K. M,  G. I, Accurate and stable finite volume operators for unstructured flow
solvers, Annual Research Briefs 2006, Center for Turbulence Research, Stanford University, NASA
Ames (2006), pp. 243–261.

[9] V. E. H  U. M. Y, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl.
Num. Math., 41 (2002), pp. 155–177.

[10] A. Y. K  R. W. B, Conditional moment closure for turbulent combustion, Prog. Energy Com-
bust. Sci., 25 (1999), pp. 595–687.

[11] P. K K. S, Verification of Computer Codes in Computational Science and Engineering, Chapman
& Hall/CRC, Boca Raton, 2003.

[12] P. M, K. S, W. C,  S. L, A dynamic subgrid-scale model for compressible turbulence and
scalar transport, Phys. Fluids A, 3 (1991), pp. 2746–2757.

[13] W. L. O, T. G. T,  C. H, Verification, validation, and predictive capability in compu-
tational engineering and physics, Appl. Mech. Rev., 57 (2004), pp. 345–384.

[14] N. P, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust.
Sci., 10 (1984), pp. 319–339.

[15] , Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[16] C. D. P  P. M, A dynamic model for subgrid-scale variance and dissipation rate of a conserved

scalar, Phys. Fluids, 10 (1998), pp. 3041–3044.
[17] , Progress-variable approach for large-eddy simulation of turbulent combustion, PhD thesis, Stanford

University, 2001.
[18] , Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid

Mech., 504 (2004), pp. 73–97.
[19] S. B. P, PDF methods in turbulent reactive flows, Prog. Energy Combust. Sci., 11 (1985), pp. 119–192.
[20] P. J. R, Verification and Validation in Computational Science and Engineering, Hermosa Publishers,

Albuquerque, 1998.
[21] , Verification of codes and calculations, AIAA Journal, 36 (1998), pp. 696–702.
[22] , Code verification by the method of manufactured solutions, J. Fluids Eng., 124 (2002), pp. 4–10.
[23] C. J. R, Review of code and solution verification procedures for computational simulation, J. Comp. Phys.,

205 (2005), pp. 131–156.
[24] C. J. R, C. C. N, T. M. S,  C. C. O, Verification of Euler/Navier-Stokes codes using the

method of manufactured solutions, Int. J. Num. Meth. Fluids, 44 (2004), pp. 599–620.
[25] L. S  F. H, Consistent and accurate state evaluations in variable-density flow simulations, An-

nual Research Briefs 2006, Center for Turbulence Research, Stanford University, NASA Ames (2006),
pp. 135–147.

[26] J. S, General circulation experiments with the primitive equations, Mon. Weather Rev., 91 (1963),
pp. 99–164.

[27] D. T, S. E,  D. P, Code verification and the method of manufactured solutions for
fluid-structure interaction problems, in 36th AIAA Fluid Dynamics Conference, vol. 2, San Francisco,
CA, June 2006, pp. 882–892.

CSRI Summer Proceedings 2007 137

VALIDATION OF ANALYTICAL MODELS FOR FAULT TOLERANCE

MARIA RUIZ VARELA† AND RON A. OLDFIELD‡

Abstract. Traditional application-directed checkpointing approaches, in particular checkpoint-to-disk, might
not scale for next-generation massively parallel processing (MPP) systems. Analytical modeling of the checkpointing
overhead on such massive-scale systems supports this claim. These analytical models provide valuable insight of
the behavior of checkpointing; however, there are aspects of the checkpoint operation that are complex to model
mathematically; thus, the next step to obtain accurate figures of the impact of checkpointing on the performance of
large-scale applications is to validate these analytical models on a massive-scale supercomputer. This work describes
our efforts to develop software to validate the analytical model of checkpoints on the Red Storm supercomputer at
Sandia National Laboratories.

1. Introduction. A modern massively parallel processing (MPP) system, typically com-
prising tens of thousands of processors, executes applications that, by design, use a large
number of these processors and can take days and even months to complete. Moreover, these
large-scale applications address relevant scientific problems. Because of the size and the crit-
ical nature of these applications, adequate fault tolerance mechanisms need to be in place
to enable scientists to obtain significant results in a reasonable amount of time. In case the
system fails, checkpointing enables the application to restart from the immediate previous
checkpoint, not from the beginning; saving computation time and computation resources.

Traditional checkpointing mechanisms have provided acceptable fault-tolerance for
modern MPP systems. The question is if, given the predicted size of future systems, will
current mechanisms, specifically checkpointing-to-disk approaches, scale for next-generation
MPP systems consisting of hundreds of thousands of processors. Checkpoint-to-disk is cur-
rently the most widely used method in massive-scale systems. As the number of processors
in MPP systems increases, the use of traditional checkpoint-to-disk as fault tolerance mecha-
nisms is likely to cause the storage system to become a bottleneck.

Previous collaborative work between Sandia National Laboratories (SNL) and The Uni-
versity of Texas at El Paso (UTEP) produced analytical models of the impact of checkpoints
on the performance of applications executing on next-generation MPP systems. These models
showed that, as the size of the system increases, current application-directed, checkpointing-
to-disk strategies will negatively affect application performance, where checkpointing can
take as much as 50 percent of the application’s total execution time. This predicted high
checkpoint overhead makes current approaches unsuitable fault tolerance mechanisms for fu-
ture systems.

Although analytical models provided valuable insight into the behavior of the checkpoint
operation, it is difficult to mathematically model it in its entirety. Because of the inherent com-
plexity of mathematical modeling, to obtain analytical models, it is necessary to make several
simplifying assumptions; for instance, the analytical models of the checkpoint operation as-
sume that there is no network or storage contention, that all processors write the same amount
of state and that the parallel system is perfectly scalable. Failures in the overlay network or
the storage system are not modeled. In most cases, these assumptions are not in accordance
with the actual behavior of real systems. Consequently, to obtain accurate figures on the
impact of checkpoints on application performance, it is imperative to validate the analytical
models on a large-scale system. Experimental validation on a large-scale system can provide
valuable information about system behavior that is complex to model mathematically, e.g.,
overheads associated with the network and the storage system.

†The University of Texas at El Paso, mdruizvarela@miners.utep.edu
‡Sandia National Laboratories, raoldfi@sandia.gov

138 Validation of Analytical Models for Fault Tolerance

T 2.1
MPP systems parameter values

Parameter Red Storm BlueGene/L Jaguar Petaflop
nmax × cores 12, 960 × 2 65, 536 × 2 11, 590 × 2 50, 000 × 2

dmax 1GB 0.25GB 2.0GB 2.5GB
βs 50GB/s 45GB/s 45GB/s 500GB/s
βn 2.3TB/s 360GB/s 1.8TB/s 30TB/s
βL 4.8GB/s 1.4GB/s 3.8GB/s 40GB/s

In this context, the objective of this work is to develop software to validate the analytical
models of the checkpoint operation on the Red Storm supercomputer at SNL.

2. Background. Reducing the checkpoint overhead is essential to improve application
performance. Checkpoint overhead as defined in [11], is the increase in total application ex-
ecution time caused by checkpointing. There are several techniques that have been proposed
to ameliorate the effect of checkpoints on application performance. The work in [5] proposes
a checkpoint mechanism that combines a lightweight file system (LWFS) and an overlay net-
work to reduce checkpoint overhead, and consequently, improve application performance.

An overlay network can be tough as a virtual topology that is built on top of a physi-
cal underlying network or protocol [4]. In the LWFS+overlay approach, each compute node
writes its state to intermediate nodes of the overlay network. In a traditional checkpoint-to-
disk approach [9], application state is written directly to stable storage, where stable storage
is persistent, rather than volatile, as in checkpoint-to-memory approaches [10] [2]. The inter-
mediate nodes of the overlay network enable the buffering of checkpoint data to disk. This
strategy enables the application to transfer checkpoint data at speeds governed by the net-
work bandwidth rather than by the storage bandwidth. The use of an overlay network in
this manner helps prevent the I/O storage system from becoming a bottleneck, improving
I/O performance of checkpointing. Table 2.1 shows different parameters for several massive-
scale, in-production systems and a theoretical Petaflop system. It can be seen across systems
that the difference between storage and network bandwidths can be as large as one order of
magnitude.

Once in the intermediate nodes, instead of being saved to a traditional file system, check-
point data is saved to the LWFS to speed up the time it takes to save the checkpoint file to
persistent storage. LWFS follows the lightweight approach used in the design of Catamount,
the operating system of the Red Storm supercomputer [1]. The compute nodes in Red Storm
use a lightweight operating system that does not support operations such as threading, multi-
tasking, or memory management. Other nodes such as I/O nodes and service nodes use a more
traditional or heavyweight operating system to provide shared services, e.g. Linux. Follow-
ing this philosophy, the LWFS core supports only essential operations, which are defined as
those operations that do not prevent or degrade application scalability. Other non-essential
functionality is left to the application to implement it [7] [8]. The main advantage of the
lightweight storage architecture compared to a traditional file system is that it provides fast
and direct access to storage. These features make the use of lightweight storage architectures
suitable for checkpointing. In a traditional file system, the I/O requests made by diskless
compute nodes of an MPP system send have to be sent through the network. LWFS provides
a mechanism to enable the clients, i.e., the overlay nodes that needs to save checkpoint data,
to directly access the storage devices. Figure 2.1 shows the LWFS core architecture.

The analytical models of the checkpoint operation provided in [6] showed that
application-directed checkpoint-to-disk will likely cause the storage system to become a bot-

M.R. Varela and R.A. Oldfield 139

F. 2.1. The LWFS core architecture in [7]

F. 2.2. Creation of an intracommunicator [3]. The original group of n processes, MPI COMM WORLD, is par-
titioned into two groups, one for the compute processes and other for the overlay processes. An intercommunicator
between the two is created.

tleneck for next-generation MPP systems. LWFS+overlay checkpointing seeks to alleviate
this problem. To model the use of the overlay network during the checkpointing operation,
the analytical model incorporates the bandwidth of the checkpoint operation as a parameter
for describing the time required to write a checkpoint file to stable storage:

δ = αc +
nd
βchkpt

,

where:

αc = Start-up cost of a checkpoint operation,
n = Number of processors used by the application,
d = Amount of data written by each processor,
βchkpt = Perceived bandwidth of a checkpoint operation, i.e.,

min(nβL, βn, βs),
βL = One-way network bandwidth per link,
βn = Aggregate bisection network bandwidth, and
βs = Aggregate storage system bandwidth.

The results in [6] showed that when checkpoint data fits in the intermediate nodes, the
LWFS+overlay approach outperforms traditional checkpoint-to-disk.

140 Validation of Analytical Models for Fault Tolerance

3. Method. A proof of concept application was implemented to validate the analytical
models developed in [7]. This MPI application creates compute processes that perform useful
computation work and, after a fixed period of time, pauses to checkpoint its computation state.
For our purposes, the compute nodes do not perform any useful computation, they remain idle
during the checkpointing period. The duration of the computation period is determined by
the value of the checkpoint interval, which is the application execution time elapsed between
two consecutive checkpoint operations.

3.1. The overlay network. In the LWFS+overlay checkpointing approach, the compute
nodes of the MPP system save computation state to intermediate nodes in the overlay network,
rather than saving it directly to storage. To simulate the overlay network, the application uses
communicators to create a subset of processes from the original communicator. When MPI
is initialized, a set of processes associated with the default communicator, MPI COMM WORLD,
is created. MPI Comm split creates a new subset of processes from the original set of pro-
cesses associated with MPI COMM WORLD. This new intracommunicator comprises the overlay
processes. The number of overlay processes can be set on an input configuration file that is
read by the MPI application. MPI COMM WORLD is a partition of two disjoint sets, the set of the
compute processes, and the set of the overlay nodes. To link processes of these two groups,
MPI Intercomm create creates a new intercommunicator from two existing intracommuni-
cators. This enables communication between the group of compute processes and the group
of overlay processes. Figure 2.2 shows the creation of the intercommunicator.

3.2. The LWFS programming interface. The LWFS programming interface provides
services that enable clients to write directly to storage. In the LWFS+overlay checkpointing
approach, the compute nodes save the state to intermediate nodes of the overlay network.
The application stores pending write requests in a linked list data structure. Depending on
the file system configuration option, checkpoint files are written to a Unix file system or to
the LWFS. In case the application is configured to save to the LWFS, it initializes the data
structures used by the LWFS programming interface. The LWFS initialization:

1. parses the configuration file,
2. gets the services descriptions for the services, i.e. the authorization and storage

services,
3. broadcasts them to all processes.

The application creates a container to which processes will save objects. To write to the
container it is required to first obtain the capability that enables the client process to write
objects to that container. The capability is then broadcasted to all the overlay processes. Since
checkpointing only requires to write to the LWFS, overlay processes use the same container
ID to save checkpoint files. When the application execution pauses to perform a checkpoint,
each process creates a checkpoint file in parallel. In this file-per-process operation, each
process that needs to save a file initializes and creates the object structure that stores the data
that will be written to the LWFS. After the object structure is created, the file is saved to
storage.

4. Conclusions. We described a proof of concept application that simulates a parallel
application that checkpoints using the LWFS+overlay approach. This work is a preliminary
effort oriented at developing software to validate the analytical models of the checkpoint
operation proposed in [7]. While analytical modeling provided valuable insight of the check-
point operation, it is complex to model all of its aspects; thus, experimental validation can
help to better understand the effect of checkpointing on modern and next-generation MPP
systems. It is planned that the development efforts will continue and that the latest version of
the validation software will be executed on the Red Storm supercomputer at SNL.

M.R. Varela and R.A. Oldfield 141

REFERENCES

[1] W. J. C  J. L. T, The Red Storm computer architecture and its implementation, in The Confer-
ence on High-Speed Computing: LANL/LLNL/SNL, Salishan Lodge, Glenedon Beach, Oregon, 2003.

[2] C. E  A. G, A diskless checkpointing algorithm for super-scale architectures applied to the
fast fourier transform, in Proceedings of the International Workshop on Challenges of Large Applications
in Distributed Environments, Seattle, WA, June 2003, IEEE Computer Society Press, pp. 47–52.

[3] I. F, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[4] A. G, K. S, O. N,  H. S, Network processors as building blocks in overlay
networks, in Proceedings of the 11 th Symposium on High Performance Interconnects (HOTI03), August
2003, pp. 83–88.

[5] R. O, Investigating lightweight storage and overlay networks for fault tolerence, in Proceedings of the
High Availability and Performance Computing Workshop, Santa Fe, NM, October 2006.

[6] R. O, S. A, P. T, S. S, M. V, R. R,  P. R, Modeling the impact
of checkpoints on next-generation systems, in Proceedings of the IEEE Conference on Mass Storage
Systems and Technologies (to appear), San Diego, CA, September 2007.

[7] R. O, A. M, S. A, T. K, R. R, L. W,  P. W, Lightweight I/O
for scientific applications, in Proceedings of the IEEE International Conference on Cluster Computing,
Barcelona, Spain, September 2006.

[8] R. O, P. W, A. M, L. W,  T. K, Efficient data-movement for lightweight
I/O,, in Proceedings of the IEEE International Conference on Cluster Computing, Barcelona, Spain,
September 2006, pp. 1–9.

[9] J. S. P, Improving the performance of coordinated checkpointers on networks of workstations using RAID
techniques, in Proceedings of the Symposium on Reliable Distributed Systems, 1996, pp. 76–85.

[10] L. M. S  J. G. S, An experimental study about diskless checkpointing., in Proceedings of the 24th
EUROMICRO Conference, Vasteras, Sweden, August 1998, IEEE Computer Society Press, pp. 395–
402.

[11] N. H. V, Impact of checkpoint latency on overhead ratio of a checkpointing scheme, IEEE Transactions
on Computers, 46 (1997), pp. 942–947.

CSRI Summer Proceedings 2007 142

AN OPTIMIZATION UNDER UNCERTAINTY (OUU) ALGORITHM WITH AN
EXAMPLE FROM DESIGN

FRANCESCA D. REALE-LEVIS∗, VICENTE J. ROMERO†, AND LAURA P. SWILER‡

Abstract. We present an algorithm that has been designed to reduce the number of function evaluations required
to perform optimization under uncertainty (OUU). This method minimizes variance while ensuring that a prescribed
mean target level of system output is achieved. We apply the optimization procedure to an automotive device design
robustness problem. We consider a snap-fit composed of a moving part and a stationary part which are designed
to the specification of three uncertain design variables. The three design variables and an additional noise variable
determine the friction force between the two parts. All four factors contribute to variability of the friction force.
Using our process, we find a point in the design space of minimum variance subject to a constraint that the mean of
the friction force is a set level. We consider an exhaustive search and reliability methods for comparison of results
and cost.

1. Introduction. Optimization under uncertainty refers to performing an optimization
procedure when there is uncertainty or noise in the variables to be optimized over. This
algorithm has been designed to minimize the number of function evaluations necessary to
perform optimization under uncertainty. We present a method that simultaneously minimizes
the variance of a desired output response while maintaining the constraint that the mean
is fixed at a certain level. We demonstrate the process using an automotive device design
example. The optimization procedure incorporates robustness into the design. We find a
set of values for the design variables that ensure repeatability throughout the manufacturing
process and service life.

2. A Taguchi Snap-Fit Example. We demonstrate the process using an automotive
device design robustness example. The optimization procedure incorporates repeatability into
the target design leading to efficiency in the manufacturing process and improved satisfaction
for the duration of customer use. The type of snap-fit we present is used to connect an
encapsulated motor stator and motor housing [7].

Consider a snap-fit design [12] that is composed of both a moving part and a stationary
part that are designed to the specification of three uncertain design variables: spring constant
K (N/mm), interference I (mm), and ramp angle θ (degrees). A fourth noise variable is the
friction coefficient µ. The interference I represents the vertical distance between the tip on
the fixed part and the bottom edge of the tip on the moving part. In order to snap the parts
together, the moving part must move past the tip of the fixed part. Whether or not the parts
permanently snap together is largely based on the ramp angle. The setup is demonstrated in
Figure 2.1

All four variables help to determine the friction force Y (N) between the moving and
stationary parts. This relationship is

Y = KI
µ + tan θ

1 − µ tan θ
. (2.1)

The bounds on the nominal values of the design variables are 500 N/mm ≤ K ≤ 600
N/mm, 0.1 mm ≤ I ≤ 0.35 mm, and 45 degrees ≤ θ ≤ 65 degrees. We refer to these intervals
as the design ranges of the design variables. The average value of the friction coefficient µ is
0.17. As specified in [12], all four variables are normally distributed with respective standard

∗North Carolina State University, fdreale@ncsu.edu
†Sandia National Laboratories, vjromer@sandia.gov
‡Sandia National Laboratories, lpswile@sandia.gov

F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 143

Spring constant K

Friction coefficent µ θ

Fixed Part

Moving Part

Interference I

F. 2.1. A snap-fit design example. Figure redrawn from Ref. [12].

deviations σK = 10 N/mm, σI = 0.017 mm, σθ = 1 degrees, and σµ = 0.017. We assume
that the above standard deviations hold for all nominal values of the four variables.

We aim to minimize variance and satisfy the constraint on the mean Ȳ = 120 N simulta-
neously.

3. Reduction to Two Design Variables. There are three design variables K, I, and θ
which specify how the moving and stationary parts are related. There are four uncertain
variables K, I, θ, and µ which lead to variability in the result Y .

Let us analyze the three design variables and their effect on Y . We vary the nominal value
of each variable while the nominal value of each other design variable is fixed at the center
of its design range. The value of µ is fixed at its mean. Figure 3.1 demonstrates that over the
design range of K there is smaller change in Y than there is over the design ranges of I and θ.

500 510 520 530 540 550 560 570 580 590 600
0

200

400

K

Y

0.1 0.15 0.2 0.25 0.3 0.35
0

200

400

I

Y

45 50 55 60 65
0

200

400

θ

Y

F. 3.1. The friction force over the design range of each design variable.

We reduce to two design variables so that we can better demonstrate the following robust
optimization algorithm visually. Based on the relative importance of the three design vari-

144 An Optimization Under Uncertainty (OUU) Algorithm with an Example from Design

ables, we relegate K to be strictly a noise variable. Now there are two design variables I and
θ for which we change the nominal values throughout the optimization procedure. There are
still four uncertain variables K, I, θ, and µ. The nominal value of K is fixed at 550 N/mm and
µ is fixed at 0.17 throughout the procedure.

4. Analysis of the 2D Design Space. The problem statement has slightly changed.
Now, we optimize over two variables I and θ. We still aim to minimize variance and sat-
isfy the constraint on the mean Ȳ = 120 N. We study the behavior of the friction force, its
mean, and its variance.

We allow the two design variables to vary over their design ranges while we fix the
nominal values of the other variables at K = 550 N/mm and µ = 0.17. We use a 25 × 25
linearly spaced grid of points in the two dimensional design space. The mean and standard
deviation are determined using 200 samples at each point.

We examine the design space for the contour Y = 120 N. Figure 4.1(a) displays the
contours of Y . We find that the friction force is mildly nonlinear. During the process, we
depend on the Y = 120 N contour being “close” to the Ȳ = 120 N contour. Figure 4.1(b)
illustrates Ȳ − Y . The absolute difference between Y and Ȳ is less than one percent of the
friction force throughout the design space.

100

115

115

120

120

125

125

200

200

200

300

300

300

300

400

400

400

500

500

600

I

θ

0.1 0.15 0.2 0.25 0.3 0.35
45

50

55

60

65

(a) Contour plot of the friction force Y .

0.15
0.15

0.15

0.25

0.25
0.25

0.5

0.5

0.5

1

1

1

1

1.5

1.5

1.5

2

2

2

I

θ

0.1 0.15 0.2 0.25 0.3 0.35
45

50

55

60

65

(b) Contour plot of | Ȳ − Y |.

F. 4.1. The friction force Y as well as the relationship between Y and the mean Ȳ.

We study the contours for both the mean and variance. Figure 4.2(a). presents the mean
contours. Figure 4.2(b). shows an approximation to the standard deviation contours. Based
on the direction of decreasing standard deviation, we expect that the best point is at the lower,
right end of the Ȳ = 120 N contour.

By relegating K to be strictly a noise variable, we change the original problem. As we
see from these plots, this is a mildly nonlinear function that we can visually track as well.
Some of the techniques used in the following iterative process can be applied to an array of
problems, some will not be as effective when applied to highly nonlinear problems.

5. An iterative process: lowering variation while Y = 120 N. We employ an algo-
rithm for finding an “optimal” point which has minimum variance while maintaining a fric-
tion force value of approximately 120 N. We first find the contour line Y = 120 N, then step
along the contour to minimize variance.

For a visual representation of the process, see Figure 5.1 which provides the position of
each iterate as well as the two tangent line approximations to Y = 120 N.

F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 145

100

115

115

120

120

125

125

200

200

200

300

300

300

300

400

400

400

500

500

600

I

θ

0.1 0.15 0.2 0.25 0.3 0.35
45

50

55

60

65

(a) A mean approximation using 200 random sam-
ples.

15
20

20

20

30

30

30

30

40

40

40

40

50

50

50

I

θ

0.1 0.15 0.2 0.25 0.3 0.35
45

50

55

60

65

(b) A standard deviation approximation using 200
random samples.

F. 4.2. The contours of the two-hundred sample mean and standard deviation.

0.1 0.12 0.14 0.16 0.18 0.2 0.22
45

46

47

48

49

50

51

52

53

54

55

56

I

θ

2

3

4

5 7
6

Center of the
space, 1

 −−−−−− L
1

 −.−.−.− L
2

F. 5.1. The iteration history and the approximations to Y = 120 N.

5.1. Finding Y = 120 N. We maintain that two of the nominal values are fixed at K =
550 N/mm and µ = 0.17. Consider a starting point at the center of the design space where
I = 0.225 mm and θ = 55 degrees.

5.1.1. An Analytic Line Search Coefficient Approach. We consider F a function of n
variables where F(~x) = F((x1, x2, ..., xn)). Suppose that we want to reach a target value of F
which we call Ft.

The tangent hyperplane formula is

(F(~x) − F(~x0)) =
∂F
∂x1

(x1 − [x1]0) + . . . +
∂F
∂θ

(xn − [xn]0). (5.1)

We can write this as ∆F = ∇F · ∆~x.
Further, consider a single step of gradient descent ~x1 = ~x0 − λ∇F where λ is the line

search coefficient. We rewrite gradient descent in the form ∆~x = −λ∇F.
Combining the tangent plane and gradient descent expressions yields

∆F = ∇F · ∆~x = −∇F · λ∇F = −λ ||∇F||22 . (5.2)

146 An Optimization Under Uncertainty (OUU) Algorithm with an Example from Design

We solve for λ to obtain our analytic line search coefficient.
This yields an iterative process. We perform gradient descent ~xn+1 = ~xn − λn∇F where

we have analytic line search coefficient

λn = −
Ft − F(~xn)
||∇F||22

=
F(~xn) − Ft

||∇F||22
. (5.3)

Now, we apply the above process to our test problem. Although we can use analytic
gradients for the test problem, to mimic a problem in which analytic derivatives are not avail-
able, we use forward difference perturbations of one percent of the design ranges. We retain
this gradient for the remainder of the line search process. We want to find Y = 120 N or
some reasonably close value to this target; e.g. within one percent. At each step, we perform
gradient descent  Ii+1

Ti+1

 =  Ii

Ti

 − λi

 ∂Y
∂I
∂Y
∂T

 (5.4)

with our updated step coefficient,

λi =
Yi − 120
∂Y
∂I

2
+ ∂Y

∂T
2 =

Yi − 120
||∇Y ||22

(5.5)

where T = π
180θ and Ti =

π
180θi are in radians. After three line search steps, we obtain the

point I = 0.1208 mm and θ = 51.5553 degrees where Y = 120.9170 N. We next obtain a
tangent line approximation L1 to the Y = 120 N contour of Figure 4.1(a).

5.2. Moving in the Direction of Lower Variance. Now that we have found where
Y ≈ 120 N, we follow the tangent line approximation L1 in the direction of lower variance.
We test three methods to direct movement.

5.2.1. Linearized response function for calculating variance. The First-Order, Sec-
ond Moment (FOSM) variance formula [4] for the test problem is

σ2
FOSM =

∂Y
∂K

2

σ2
K +

∂Y
∂I

2

σ2
I +

∂Y
∂θ

2

σ2
θ +

∂Y
∂µ

2

σ2
µ. (5.6)

We approximate the partial derivatives using forward difference calculations with one
percent of the design range perturbations in I and θ. Correspondingly, we perturb K by
1 N/mm and µ by 0.0035. Each FOSM calculation of the variance requires five function
evaluations.

5.2.2. Two Sample Ordinal Variance Estimate. Figure 5.2 shows a crude approxima-
tion to the standard deviation contours using two samples at each point. The first sample is the
quadruplet containing the nominal values at each point (i.e. Y at [K̄, Ii, θi, µ̄] where the sub-
script i signifies the design space coordinates of point i in Figure 5.1) and the second sample
is the quadruplet where we perturb each variable by one standard deviation simultaneously
(i.e. Y at [K̄ + σK , Ii + σI , θi + σθ, µ̄ + σµ]). Each variance calculation requires only two
function evaluations.

We compare the two sample ordinal standard deviation to the two hundred sample stan-
dard deviation. To make Figure 5.2, we perform 25 × 25 × 2 = 1, 250 function evaluations.
We compare this to 25 × 25 × 200 = 125, 000 function evaluations used to create Figure
4.2(b). Although two sample ordinal is not able to predict the same absolute behavior of the
contours, it is able to predict the relative behavior which is sufficient for the comparisons
between successive points.

F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 147

20

20

30

30

30

30

40

40

40

40

50

50

50

50

100

I

θ

0.1 0.15 0.2 0.25 0.3 0.35
45

50

55

60

65

F. 5.2. A standard deviation approximation using two previously chosen samples.

5.2.3. Sampling based on a Specified Confidence Level. Using Latin hypercube sam-
pling (LHS) that is implemented in DAKOTA [3], we perform an F-test. The null hypothesis
is that the value of the variance at the third point is the same as the value of the variance at
the second point. The alternative hypothesis is that the variance values at the two points are
not equal.

We compare the variance at points a fixed distance apart on L1. Based on the cost and
benefit considerations, the following steps are one-fifth of the line length apart and tested at
the 60 percent confidence level.

Starting from the second point, the first advance down the line takes us to a third point
I = 0.1315 mm and θ = 49.4045 degrees where Y = 120.6423 N. We require 12 samples to
determine that the two variance values are different with 60 percent confidence.

We take another step to the fourth point I = 0.1422 mm and θ = 47.2537 degrees where
Y = 119.9849 N. Observe the proximity of Y to 120 N. We do another F-test using LHS in
DAKOTA. We find that 14 samples are required to confirm that the variance values at the
third and fourth points are not equal with 60 percent confidence.

After another step, we obtain a fifth point I = 0.1529 mm and θ = 45.1029 degrees. It
takes 14 samples to confirm that the variance at the fourth point is not equal to the variance
at the fifth point at the 60 percent confidence level. The value of Y = 118.9819 N at the fifth
point.

We can take one more truncated step down the line to the end point on the lower 45
degree edge of the design space where I = 0.1534 mm. We call this point 6a. The friction
force Y = 118.9258 N is still within one percent of 120 N and we cannot move in any direction
on the line to further decrease the variance.

5.2.4. Summary of Procedure that satisfies the original 1 % Criterion. Under the
one percent criterion we set for moving down the line, the last step from the fifth point to
point 6a completes our process. We find the final point by following one line L1 without
an additional side step. A summary of our results is included in Table 5.1. The table lists
the point, its Y value, and its standard deviation calculated by FOSM, two-sample ordinal
sampling, and sampling with the sample size chosen based on sixty percent confidence in the
F-test.

5.3. Finding a new approximation to Y = 120 N. We set a new side step criterion of
1 N so that we can demonstrate a side step. We do not see holding to this tight of a criterion,

148 An Optimization Under Uncertainty (OUU) Algorithm with an Example from Design

T 5.1
Iteration history of the algorithm with the original one percent criterion.

I (mm) θ (degrees) Y (N) FOSM Ordinal LHS
1 0.225 55 261.1819 25.9131 36.6749
2 0.1208 51.5553 120.9170 18.4662(5) 22.3074(2) 20.8599(12)
3 0.1315 49.4045 120.6423 17.0504(5) 20.7772(2) 19.2423(12)

18.0946(14)
4 0.1422 47.2537 119.9849 15.8064(5) 19.4389(2) 16.8051(14)
5 0.1529 45.1029 118.9819 14.7037(5) 18.2567(2) 15.6598(14)
6a 0.1534 45 118.9258 14.6540(5) 18.2029(2)

but for the purpose of illustration we return to the fifth point where Y is more than 1 N away
from 120 N. Therefore, we find another approximation to Y = 120 N. We do this in one step
of gradient descent with the analytic line search coefficient described in (5.5). This gives
us a new point I = 0.1541 mm and θ = 45.1248 degrees. At this sixth point, the value of
Y = 120.0013 N. We obtain an updated tangent line approximation L2 to Y = 120 N.

5.4. Proximity to Ȳ = 120 N. We continue in the direction of decreasing variance. We
cannot complete a one-fifth of the line step without leaving the design space. Therefore we
complete a truncated step to the lower edge of the design space. The seventh point we obtain
is I = 0.1548 mm and θ = 45 degrees where Y = 119.9977 N. Now we have found a point
where the friction force is within 1 N of 120 N and we cannot move along the tangent line to
further decrease variance. So, we are done with this part of the process.

Now, we must determine how close this point on the approximation to the Y = 120 N
contour is to the Ȳ = 120 N contour. We want the true mean to be within two-fifths of the
standard deviation of the target mean 120 N. We use two types of methods to study the mean
at the final point. We begin with sampling for a specific confidence interval width. We also
discuss point estimate methods.

5.4.1. Sampled value of Mean used for Comparison. To compare the accuracy of the
methods we use to study the mean, we determine a reference mean by taking 100,000 LHS
samples. We obtain a sample mean of Ȳ = 120.1941 N and a sample standard deviation of
s = 14.7477 N. From these results, we obtain the 95 percent confidence interval on the mean
(120.1027, 120.2855) N. Now we know that the true mean is within two-fifths of the sample
standard deviation (2

5 s = 5.8991 N) away from our target mean with 95 percent confidence.

5.4.2. Sampling for specific confidence interval within 2
5σ of Ȳtarget . We use a con-

fidence interval on the mean to determine if the seventh point is near the Ȳ = 120 N contour.
We attempt to fix the width of the confidence interval. We determine the number of samples
required to obtain a 90 percent two-sided confidence interval on the mean with half-width 2

5 s
where s is the sample standard deviation.

For the purpose of finding the required sample size n, we assume a standard normal
distribution. Thus, we find n such that 2/5 ≈ t(1−α/2;n−1)

√
n where t(1 − α/2; n − 1) refers to

Student’s-t distribution. Using α = .1, we find that we require n = 19 for the half-width
to be approximately 2

5 s. Notice that the sample size obtained is not dependent on the test
problem or the number of variables. If we wanted the half-width to be γs, we find n such that
γ ≈ t(1−α/2;n−1)

√
n .

We analyze the confidence intervals on the mean that are produced when n = 19 using
simple random sampling (SRS) and LHS both implemented in DAKOTA. Among the sixty
different samplings, we obtain five intervals which do not include 120 N. Figure 5.3 provides

F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 149

T 5.2
Increasing accuracy of mean (first moment) estimates.

Method Number of Function Evaluations Mean Ȳ (N)
Mean value 1 119.9977
Hong’s “2n” 8 120.1934

Hong’s “2n + 1” 9 120.1933
Two-point Rosenblueth“2n” 16 120.1935
Three-point Seo-Kwak “3n” 81 120.1938
LHS with 100,000 samples 100,000 120.1941

a visual representation of the results from this sampling activity. The seed values are found
using the MATLAB implementation of the Mersenne Twister pseudorandom number gener-
ator. Initially, the function is reset using the seed value 5489. We take the numbers produced
by the routine and multiply them by 10,000. We obtain the current seed by taking the ceiling
function of that product.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
105

110

115

120

125

130

135

Seed

C
on

fid
en

ce
 In

te
rv

al
s

on
 C

al
cu

la
te

d
M

ea
n

(a) Two-sided 90 percent confidence intervals using
SRS.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
105

110

115

120

125

130

135

Seed

C
on

fid
en

ce
 In

te
rv

al
s

on
 C

al
cu

la
te

d
M

ea
n

(b) Two-sided 90 percent confidence intervals using
LHS.

F. 5.3. Examination of the two-sided 90 percent confidence intervals of the mean.

Among our thirty SRS trials, the SRS estimates lead us to find that more than 10 percent
of the intervals did not contain the true mean. Previous experience with a larger number of
trials [9] indicates that you cannot expect 100(1 − α) percent SRS confidence intervals to
contain the true mean the advertised 100(1 − α) percent of the time. We strongly recommend
using LHS over SRS. Based on the results, we believe that the true mean is within 2

5σ of the
target mean 120 N.

5.4.3. Statistical-Moment Generation Approach (Response Mean by Optimal
Placement and Weighting). We use point estimate methods (PEMs) to determine the mean
(first moment) by optimal placement and weighting of samples. These methods are also re-
ferred to as statistical-moment generating methods. Table 5.2 provides an overview of the
results. Observe the proximity of these results to the 100,000 sample mean. We observe that
these methods provide fairly high accuracy at low cost. Another benefit of using PEMs is that
the same samples used to compute the mean can also be used to compute the variance and
standard deviation so that no further function evaluations are necessary.

The mean value estimate [1] is 119.9977 N. The final point is the only sample.
Now, we use a 2n PEM [6] where n is the number of variables. For our example, n = 4.

150 An Optimization Under Uncertainty (OUU) Algorithm with an Example from Design

This case corresponds to m = 2. Let k = 1, . . . , n and i = 1, . . . ,m. We sample the points

xk,i = x̄k + ξk,isk (5.7)

where x̄k is the nominal value of the kth variable and sk is the standard deviation of the kth

variable. Under the assumption of normality, we have

ξk,i = (−1)3−i √n (5.8)

and equal weighting is used so that the weights of each point are defined by pk,i =
1
2n . This

method yields the mean 120.1934 N.
A 2n + 1 method [6] uses the center point as well. This is the m = 3 case. To clarify

the formula, the kurtosis of a normal distribution is considered to be three. We use the same
point-generation formula (5.7) as before, but now, under the assumption of normality, we
have {

ξk,i = (−1)3−i
√

3, i = 1, 2
ξk,3 = 0.

(5.9)

The weights also change. Now, pk,1 = pk,2 =
1
6 and the middle point’s weight is 4×− 1

12 = −
1
3 .

From this exercise, we obtain the mean estimate 120.1933 N.
We try a 2n [10] method. Let i = 1, 2 and k = 1, . . . , n. We use (5.7) just as before, but

now

ξk,i = (−1)3−i. (5.10)

We have equal weighting so pk,i =
1
2n . We find the mean estimate 120.1935 N.

The final estimation method we try is a three-point Seo-Kwak [11]. Now i = 1, 2, 3 and
k = 1, . . . , n. We use (5.7) with {

ξk,i = (−1)3−i
√

3, i = 1, 2
ξk,3 = 0.

(5.11)

The Gauss-Hermite three-point weights are used. Therefore pk,1 = pk,2 =
1
6 and pk,3 =

2
3 . A

product weighting system is used. The first-moment result from this method is 120.1938 N.

5.5. Iteration History. Table 5.3 lists the iteration history starting from the middle of
the design space. The variance and standard deviation provided are found using FOSM. The
partial derivatives are computed by a forward difference approximation. For the design vari-
ables I and θ, the perturbations are one percent of their design ranges. For K, the perturbation
is 1 N/mm. For the friction coefficient µ, the perturbation is 0.0035. For a visual history of
the algorithm, refer back to Figure 5.1.

5.6. Cost. We first determine the cost of moving along the Y = 120 N contours. We
then discuss the variance comparison cost along the way. We end with the cost of the studies
on the mean. Observe that this is the cost associated with the 1.2 N side step criterion.

Performing gradient descent with an analytic line search to get our first point on Y = 120
N costs six function evaluations. We use three more to determine L1. We follow this line to
the fifth point while we check to make sure we are within some tolerance of 120 N. This costs
four function evaluations. Altogether we spend 13 function evaluations to move down L1.

Now, we consider the cost of the variance comparisons. We have already computed the
function value at all five points on the tangent line so we use the previously computed friction
force values in the variance estimates. Using linear approximations costs us 5 × 4 = 20

F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 151

T 5.3
Iteration history the algorithm.

Iteration I (mm) θ (degrees) Y (N) s2 (N2) s (N)
1 0.225 55 261.1819 671.4899 25.9131
2 0.1208 51.5553 120.9170 341.0013 18.4662
3 0.1315 49.4045 120.6423 290.7151 17.0504
4 0.1422 47.2537 119.9849 249.8437 15.8064
5 0.1529 45.1029 118.9819 216.1979 14.7037
6a 0.1534 45 118.9258 214.7400 14.6540
6 0.1541 45.1248 120.0013 217.2102 14.7380
7 0.1548 45 119.9977 215.4828 14.6793

more function evaluations. Using the ordinal sampling requires 5 × 1 = 5 additional function
evaluations. Alternatively, we do the F-tests to compare the points that are one-fifth of the
line apart using 66 function evaluations. The values used in the F-tests were generated by
LHS which is not incremental. If we had used SRS, we could take advantage of incremental
sampling and the cost would be 54. However, we do not know if the number of samples
required to deem that the variances differed would be the same for SRS.

We tally the number of function evaluations needed to perform the analysis of the mean
at the final point. We attempt to fix the confidence interval magnitude. To do this and do a
check for false positives/negatives, we require 19 × 2 = 38 function evaluations. However,
one confidence interval computed with 19 LHS results may be sufficient as it was in the
example we provided. We save significantly by using the PEMs. Since we already computed
the friction force Y at the final point, mean value is free. For the same reason, using 2n + 1
requires only 8 more function evaluations. Since 2n and 2n + 1 are not sampled at the same
points, we use 8 more to get the 2n result. Sixteen samples are averaged to obtain the two-
point Rosenblueth result. Since the 3n uses the center sample and the same samples at the
center of each face used for 2n + 1, we use only 72 more function evaluations to get the
Seo-Kwak estimate.

6. Comparison of results to other methods. We compare the results of a few other
methods to the result of the algorithm when a 1.2 N side step criterion is used. We use 1,000
LHS samples to determine the mean and standard deviation at the returned point for each
method. The sample mean at the final point is 119.1069 N and the sample standard deviation
is 14.7263 N.

Using DAKOTA we perform an exhaustive search to find the point of best variance where
the mean value of the friction force is approximately 120 N. We implement the nested opti-
mization routines in DAKOTA. The outer loop is an optimization algorithm while the mean
and variance used in the constraints and objective function are determined in the inner loop.

The outer loop is a Coliny division of rectangles (DIRECT) optimization routine. The
global search balancing parameter is set to zero while the local search balancing parameter is
set to 1 × 10−8. We test DIRECT using two inner loops.

First, the mean and variance are determined by 10 LHS samples in the inner loop. The
objective of DIRECT is to minimize variance subject to the constraint that the mean be within
1 N of the target mean. We set a solution threshold of 15. This nested routine performs 1,250
function evaluation and returns the point I = 0.1519 mm and θ = 45.3705 degrees. These
results correspond to a mean of 119.6255 N and a standard deviation of 14.9158 N.

Next, we use the DAKOTA reliability package [1] to further confirm our results. We aim
to minimize E[| Y − 120 |] + Cσ with a solution threshold of 55. The mean and standard

152 An Optimization Under Uncertainty (OUU) Algorithm with an Example from Design

deviation are computed using mean value with a gradient stepsize of 1 × 10−4. We set the
convergence tolerance to 1 × 10−4 and the threshold delta to 1 × 10−8. This optimization is
sensitive to the formulation of the objective function. The C reflects the Cσ reliability [2].
When we test C = 3, we find the point I = 0.1365 mm and θ = 48.3338 degrees using 105
function evaluations. Here the mean is 120.3002 N and the standard deviation is 16.5004 N.

We test another optimization routine that is implemented by the Coliny pattern search in
DAKOTA. The objective is to minimize variance subject to the constraint that the mean be
within 1 N of the target mean 120 N. We set a solution threshold of 15. The solution accuracy
is chosen to be 1× 10−8. We pick an initial delta of .5. The threshold delta is set to 1× 10−13.
We choose a contraction factor of .85. Using 1,360 function evaluations, the routine yields
the point I = 0.1535 mm and θ = 45.4438 degrees where the mean is 121.1675 N and the
standard deviation is 14.9873 N.

T 7.1
Costs of the optimization.

Method Task Options Cost
Algorithm

Find Y = Ytarget 13
Lower Variance

FOSM 20
Ordinal 5
Hypothesis Testing 66

Determine Mean
Fixed-width CI 19
Mean value 0
Hong’s “2n” 8
Hong’s “2n+1” 8
Two-point Rosenblueth “2n” 16
Three-point Seo-Kwak “3n” 72

DIRECT using LHS 1,250
with reliability 113

Pattern search 1,360

7. Cost Comparison. The cost is the number of function evaluations required. In other
words, we compare how many times we need to compute the friction force Y for each method.
It is clear that the cost of our algorithm is dependent on which methods are used for each task
and the problem. We report the cost of performing the algorithm when the original 1.2 N side
step criterion is used.

We see that all of the methods yield similar results. The main reason to use the algorithm
we have provided is the ultimate cost savings.

The cost of the algorithm is dependent on which methods are used. The entire algorithm
can be implemented in 26 function evaluations using two sample ordinal variance compar-
isons and Hong’s “2n” estimate of the mean and standard deviation at the final point. The
maximum cost of the algorithm is 151 function evaluations when F-test variance compar-
isons are used and the final mean and standard deviation estimate are determined by “3n”
Seo-Kwak. For the types of applications we consider, the three-point Seo-Kwak is not cost-
performance competitive to the two-point Rosenblueth. We suggest using two sample ordinal
variance comparisons and the “2n” two-point Rosenblueth method to estimate the mean and
standard deviation at the final point. The number of samples required for the PEMs is de-

F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 153

pendent on the number of variables n. If n ≥ 5, we suggest using the fixed width confidence
interval.

Overall, we see considerable savings over the stand alone methods discussed in the pre-
vious two sections. Table 7.1 displays the costs of the various methods.

8. Conclusions. We have described an algorithm designed to reduce the number of
function evaluations required to perform optimization under uncertainty. This method min-
imizes variance while ensuring that a prescribed mean target level of system output is
achieved. We applied the optimization procedure to an automotive device design robust-
ness problem. We compared the results and cost of our algorithm to other algorithms. We
found that the suggested algorithm finds similar or better results at a lower cost.

REFERENCES

[1] M. E, H. A, V. P, S. W J.,  J. R, Investigation of reliability method for-
mulations in DAKOTA/UQ, in Proceedings of the 9th ASCE Joint Specialty Conference on Probabilistic
Mechanics and Structural Reliability, Albuquerque, NM, July 26–28 2004.

[2] M. E, A. G, S. W J.,  T. T, Formulations for surrogate-based optimization
under uncertainty, in Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, no. AIAA-2002-5585, Atlanta, GA, Sept. 4–6 2002.

[3] M. S. E, B. M. A, D. M. G, L. P. S, K. H, W. J. B, J. P. E, W. E. H,
J.-P. W, J. D. G, P. D. H, T. G. K, P. J.W,  M. L. M-C,
DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis version 4.1 users manual, Tech. Report SAND2006-
6337, Sandia National Laboratories, October 2007. Updated September 2007.

[4] A. H  S. M, Probability, Reliability, and Statistical Methods in Engineering Design, John
Wiley and Sons, New York, 2000.

[5] M. E. H, Probabilistic estimates for multivariate analyses, Applied Mathematical Modeling, 13 (1989),
pp. 313–318.

[6] H. H, An efficient point estimate method for probabilistic analysis, Reliability Engineering and System
Safety, 59 (1998), pp. 261–267.

[7] M D., Fundamentals of annular snap-fit joints. http://machinedesign.com/

ContentItem/61167/FundamentalsofAnnularSnapFitJoints.aspx, January 2005. Penton Me-
dia, Inc.

[8] J. N, W. W, M. K, Applied Linear Statistical Models, Irwin, Homewood, IL, 1985.
[9] V. J. R  C.-H. C, Refinements in a new adaptive ordinal approach to continuous-variable proba-

bilistic optimization, AIAA Journal, (2007). To appear.
[10] E. R, Two-point estimates in probability, Applied Mathematical Modeling, 5 (1981), pp. 329–335.
[11] H. S. S  B. M. K, Efficient statistical tolerance analysis for general distributions using three-point

information, Intl. Journal of Production Research, 40 (4), pp. 931–944.
[12] S.-C. T, Taguchi S/N ratios and direct robustness measurement for computational robust design, in

SAE2006-01-0738, Detroit, MI, April 3–6 2006, 2006 SAE World Congress.
[13] L. W, D. B,  G. W, Efficient moment and probability distribution estimation using the point

estimate method for high-dimensional engineering problems, in 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, April 23–26 2007.

CSRI Summer Proceedings 2007 154

CALIBRATION AND UNCERTAINTY ANALYSIS FOR
EXPENSIVE COMPUTER SIMULATIONS

JOHN M. MCFARLAND∗, LAURA P. SWILER†, AND VICENTE J. ROMERO‡

Abstract. The use of complex simulation models, including finite element and other PDE solvers, is contin-
uing to increase in prevalence within the scientific community. These simulations are often used for prediction,
parameter studies, and high-consequence decision making, and may be characterized by a large number of input
parameters, long run times, and high-dimensional output. In many cases, experiments may be conducted under a set
of “moderate” conditions, and such results may be compared against the corresponding model predictions. When
these experimental data are used to improve the predictive capability of the model (perhaps by making inference
about internal model parameters), we call this model calibration. This work explores model calibration for realistic
engineering simulations, with an emphasis on taking a comprehensive and understandable account of various uncer-
tainties present using the methods of Bayesian analysis. We employ the use of Gaussian process models as surrogates
for the expensive simulation. In addition, we illustrate a method by which prescribed uncertainties at the modeling
level can be accounted for in the calibration under uncertainty process. Our complete methodology is thoroughly
illustrated for a thermal simulation of a complex foam model, which includes a large database of experimentally
observed response values over time and space.

1. Introduction. The importance of uncertainty in the modeling and simulation process
is often overlooked. No model is a perfect representation of reality, so it is important to ask
how imperfect a model is before it is applied for prediction. The scientific community relies
heavily on modeling and simulation tools for forecasting, parameter studies, design, and de-
cision making. However, these are all activities which can strongly benefit from meaningful
representations of modeling uncertainty. For example, forecasts can contain error bars, de-
signs can be made more robust, and decision makers can be better-informed when modeling
uncertainty is quantified to support these activities.

The set of activities which involve the quantification of uncertainty in the modeling and
simulation process includes verification, validation, calibration, and uncertainty propagation.
Verification involves the comparison of a computational implementation with a conceptual
model, in order to “verify” the implementation and assess the amount of error introduced via
numerical processes. Validation, on the other hand, is a process for comparing the computa-
tional implementation of a model against experimentally observed outcomes: this is another
opportunity to quantify errors and uncertainties. Similarly, calibration involves comparing
the implementation of a model with observations, but the objective is to use this comparison
to make inferences about unknown parameters which govern the computational implemen-
tation. Uncertainty propagation is simply the process of determining the uncertainty on the
model output that is implied by uncertainty on the model inputs.

The purpose of this paper is illustrate a methodology wherein the Bayesian framework
can be used effectively for the calibration of complex computer simulations having long run
times and highly multivariate output. The Bayesian framework is attractive because it pro-
vides a comprehensive, quantitative treatment of uncertainty: the solution is not just a single
parameter set that best fits the observed experimental data, but a probability distribution that
represents the amount of uncertainty present in the solution. For example, large modeling
sensitivities or a large amount of experimental observations may result in a solution with very
little residual uncertainty, whereas in other cases there may be a wide range of parameters
that yield comparable fits to the data.

∗Vanderbilt University, john.m.mcfarland@vanderbilt.edu
†Sandia National Laboratories, lpswile.sandia.gov
‡Sandia National Laboratories, vjromer@sandia.gov

J.M. McFarland, L.P. Swiler, and V.J. Romero 155

2. Bayesian model calibration. Model calibration is a particular type of inverse prob-
lem in which we are interested in finding values for a set of computer model inputs which
result in computer model outputs that agree well with observed data. There are several ways
to approach the model calibration problem, and one of the most straightforward is to formu-
late it as a non-linear least squares optimization problem, in which we want to minimize the
sum of the squares of the residuals between the model predictions and the observed data. This
approach can be attractive because of its simplicity, but it also has several drawbacks:

1. Finding the set of model inputs which minimizes the sum of squares may require
a large number of evaluations of the model (depending on the type of optimization
algorithm being employed). When the model is very expensive to run, this approach
may not even be feasible.

2. There may be a wide range of model inputs which provide comparable fits to the
observed data (this is sometimes termed the problem of uniqueness).

3. Small changes in some of the model inputs may cause drastic variations of the model
output, resulting in an ill-posed optimization problem.

Further, approaching the calibration problem as a least-squares optimization problem
will yield only one solution, and it can be difficult to construct meaningful information about
the uncertainty associated with this solution (although some approaches have been attempted,
as in [14]). Thus, there would be a large amount of utility in any method which overcomes the
difficulties associated with the non-linear least squares approach, and provides a more com-
prehensive treatment of the uncertainties present. Fortunately, the field of Bayesian analysis
provides such a method.

The fundamental concept of Bayesian analysis is that unknown variables are treated as
random variables. The power of this approach is that the established mathematical methods
of probability theory can then be applied. Uncertain variables are given “prior” probability
distribution functions, and these distribution functions are refined based on the available data,
so that the resulting “posterior” distributions represent the new state of knowledge, in light of
the observed data. While the Bayesian approach can be computationally intensive in many
situations, it is attractive because it provides a very comprehensive treatment of uncertainty.
More details behind the Bayesian approach are given in Section 2.1.

2.1. Introduction to Bayesian Analysis. Bayesian statistical analysis differs from clas-
sical (or frequentist) statistics fundamentally by the two camps’ interpretations of probability.
In classical statistics, the meaning of probability is directly related to frequency of occurrence.
What sets Bayesians apart is that they allow probability and probability distributions to con-
note belief or uncertainty about uncertain parameters. Thus, Bayesian analysis begins with
what is known as a “prior” distribution for the uncertain parameter, denoted π(θ). Knowledge
about the uncertain parameter is then updated by observations, D to arrive at what is called
the “posterior” distribution of θ. This process is expressed formally through what is known
as Bayes’ theorem:

f (θ | D) =
π(θ) f (D | θ)∫
π(θ) f (D | θ)dθ

, (2.1)

where f (D | θ) is known as the likelihood function of θ, and is commonly denoted L(θ)
because the data in D hold a fixed value once observed.

The meaning of Bayes’ theorem is that the posterior distribution of θ is proportional to
the prior times the likelihood (note that the integral in the denominator functions to normal-
ize the posterior distribution so that is has a total area of 1). It is worth noting that while
many classical statisticians argue fervently against the use of Bayesian analysis because of
the apparent subjectivity present in formulating prior distributions, there are many cases in

156 Calibration under Uncertainty

which well-known classical results can be derived using Bayesian analysis. This is often
the case when Bayesian analysis is applied using what are known as vague, non-informative,
or reference prior distributions (which are most commonly given by uniform or log-uniform
probability distributions), whose purpose is to represent an absence of prior knowledge, so
that the posterior distribution is a function of the data only.

The primary computational difficulty in applying Bayesian analysis is the evaluation of
the integral in the denominator of Eq. (2.1), particularly when dealing with multiple variables.
When closed form solutions are not available, computational sampling techniques such as
Markov Chain Monte Carlo (MCMC) sampling are often used [11, 4, 7, 9].

2.2. Bayesian analysis for model calibration. Consider that we are interested in mak-
ing inference about a set of computer model inputs θ. Now let us represent our simulation by
the forward model operator G(θ, s), where the vector of inputs s represents a set of “scenario-
descriptor” inputs, which may typically represent boundary conditions, initial conditions,
geometry, etc. Reference [10] terms these inputs “variable inputs”, because they take on
different values for different realizations of the system. Thus, y = G(θ, s) is the response
quantity of interest associated with our model. Also, we assume that the value of the calibra-
tion inputs θ should not depend on s, the particular realization of the system being modeled
(this point is discussed in more detail by [10]).

Now consider a set of n experimental measurements

d = d1, . . . , dn,

which are to be used to calibrate the simulation. Note that each experimental measurement
corresponds to a particular value of the scenario-descriptor inputs, s, and we assume that these
values are known for each experiment. Thus, we are interested in finding those values of θ
for which the simulation outputs (G(θ, s1), . . . , G(θ, sn)) agree well with the observed data in
d. But as mentioned above, we are interested in more than simply a point estimate for θ: we
would like a comprehensive assessment of the uncertainty associated with this estimate.

First, we define a probabilistic relationship between the model output, G(θ, s), and the
observed data, d:

di = G(θ, si) + εi, (2.2)

where εi is a random variable that can encompass both measurement errors on di and model-
ing errors associated with the simulation G(θ, s). The most frequently used assumption for the
εi is that they are i.i.d N(0, σ2), which means that the εi are independent, zero-mean Gaussian
random variables, with variance σ2. Of course, more complex models may be applied, for
instance enforcing a parametric dependence structure among the errors.

The probabilistic model defined by Eq. (2.2) results in a likelihood function for θ which
is the product of n normal probability density functions:

L(θ) = f (d | θ) =
n∏

i=1

1

σ
√

2π
exp

[
−

(di −G(θ, si))2

2σ2

]
. (2.3)

We can now apply Bayes’ theorem (Eq. (2.1)) using the likelihood function of Eq. (2.3) along
with a prior distribution for θ, π(θ), to come up with a posterior distribution, f (θ | d), which
represents our belief about θ in light of the data d:

f (θ | d) ∝ π(θ)L(θ). (2.4)

J.M. McFarland, L.P. Swiler, and V.J. Romero 157

The posterior distribution for θ represents our complete state of knowledge, and may
even include effects such as multiple modes, which would represent multiple competing hy-
potheses about the true (best-fitting) value of θ. Summary information can be extracted from
the posterior, including the mean (which is typically taken to be the the “best guess” point
estimate) and standard deviation (a representation of the amount of residual uncertainty). We
can also extract one or two-dimensional marginal distributions, which simplify visualization
of the features of the posterior.

However, as discussed in Section 2.1, the posterior distribution can not usually be con-
structed analytically, and this will almost certainly not be possible when a complex simulation
model appears inside the likelihood function. One of the more popular numerical techniques
for constructing the posterior distribution is Markov Chain Monte Carlo (MCMC) simulation
[11, 4, 7, 9]. Unfortunately, though, MCMC simulation requires hundreds of thousands of
evaluations of the likelihood function, which in the case of model calibration equates to hun-
dreds of thousands of evaluations of the computer model G(·, ·). For most realistic models,
this number of evaluations will not be feasible. In such situations, the analyst must usu-
ally resort to the use of a more inexpensive surrogate (a.k.a response surface approximation)
model. Such a surrogate might involve reduced order modeling (e.g., a coarser mesh) or
data-fit techniques such as Gaussian process (a.k.a kriging) modeling.

This work adopts the approach of using a Gaussian process surrogate to the true sim-
ulation. We find such an approach to be an attractive choice for use within the Bayesian
calibration framework for several reasons:

1. The Gaussian process model is incredibly flexible, and can be used to fit data asso-
ciated with virtually any functional form.

2. The Gaussian process model is stochastic, thus providing both an estimated response
value and an uncertainty associated with that estimate. Conveniently, the Bayesian
framework allows us to take account of this uncertainty.

3. With regards to fit accuracy, the Gaussian process model has been shown to be
competitive with most other modern data fit methods, including Bayesian neural
networks and Multiple Adaptive Regression Splines [12, 8], and it can represent
functions with multiple inputs.

For model calibration with an expensive simulation, the uncertainty associated with the
use of a Gaussian process surrogate can be accounted for through the likelihood function.
Through the assumptions used for Gaussian process modeling, the response conditional on
a set of observed “training points” follows a multivariate normal distribution. For a discrete
set of new inputs, this response is characterized by a mean vector and a covariance matrix
(see [12]). Let us denote the mean vector and covariance matrix corresponding to the inputs
(θ, s1), . . . , (θ, sn) as µGP and ΣGP, respectively. It is easy to show that the likelihood func-
tion for θ is then given by a multivariate normal probability density function (note that the
likelihood function of Eq. (2.3) can also be expressed as a multivariate normal probability
density, with Σ diagonal):

L(θ) = (2π)−n/2 |Σ|−1/2 exp
[
−

1
2

(d − µGP)TΣ−1(d − µGP)
]
, (2.5)

where Σ = σ2I + ΣGP, so that both µGP and Σ depend on θ.
Simply put, since the uncertainty associated with the surrogate model is independent of

the modeling and observation uncertainty captured by the εi, the covariance of the Gaussian
process predictions (ΣGP) simply adds to the covariance of the error terms (σ2I). As men-
tioned before, if a more complicated error model is desired (i.e. one that does not assume the
errors to be independent of each other), we can replace σ2I by a full covariance matrix.

158 Calibration under Uncertainty

Also, in some cases where there is a very large amount of experimental data available,
we may even want to model different “segments” of the output (e.g., different spatial loca-
tions or different time intervals) using separate, independent Gaussian process surrogates. In
such a case, the likelihood function is a product of multivariate normal densities, where each
density contains a particular partition of d and the corresponding surrogate predictions µGP
and ΣGP. Such a formulation may improve the accuracy of and decrease the uncertainty in
the surrogates because they are more localized, but the implementation is somewhat more
cumbersome.

2.2.1. Prescribed input uncertainties. In some cases it may be of interest to study how
the results of a calibration analysis are affected by additional modeling uncertainties. In most
cases we would do so in the Bayesian setting by augmenting the set of calibration parameters
θ with the additional uncertain model inputs. If the data d do not provide any information
about these additional uncertain inputs, then they will essentially be sampled over their prior
distribution, potentially resulting in an increase in the uncertainty in the original calibration
parameters. On the other hand, if the data d do provide information about the additional
inputs, then their posterior distribution will most likely reflect less uncertainty than their prior.
However, if we are strictly interested in the effect of additional prescribed input uncertainties,
such inputs can not be treated as calibration inputs, because their posterior may not match
the prescribed distribution of interest. Thus, this section presents a method which allows the
Bayesian calibration analysis to take account of prescribed uncertainties for additional model
inputs.

Let us denote those inputs to the simulation G(·) having prescribed probability distri-
butions by ξ. Thus, our simulation model is now a function of the calibration inputs, the
scenario-descriptor inputs, and the inputs with prescribed distributions: y = G(θ, s, ξ). De-
note the probability density function associated with ξ by f (ξ). In order to develop the pos-
terior distribution for (θ, ξ) in which the distribution of ξ is not refined by d, we must assume
artificially that the data d are statistically independent of ξ. Whether or not this is true in re-
ality can be checked by treating ξ as a calibration parameter in θ, but by artificially enforcing
the assumption, the parameters ξ are held to the prescribed distribution f (ξ).

By assuming that ξ is independent of d, we have:

f (θ, ξ | d) ∝ π(θ)L(θ) f (ξ).

Since the simulation output is a function of ξ, L(θ) is as well, so for clarity we write L(θ; ξ)1,
which yields:

f (θ, ξ | d) ∝ π(θ)L(θ; ξ) f (ξ). (2.6)

Ultimately, though, we are interested in the posterior of θ after marginalizing over the “nui-
sance” variable ξ, so we want

f (θ | d) ∝
∫

π(θ)L(θ; ξ) f (ξ) dξ. (2.7)

This marginalization is trivial if f (θ, ξ | d) is constructed using Markov Chain Monte
Carlo sampling. One possibility for constructing f (θ, ξ | d) is to use a component-wise
scheme to sequentially sample each component of (θ, ξ) from its respective full conditional

1Although it is tempting to write L(θ, ξ), we avoid doing so because this is really f (d | θ, ξ); since ξ is (assumed
to be) statistically independent of d, this would reduce to f (d | θ) = L(θ). Thus, we write L(θ; ξ) to emphasize that
it is a function of ξ, but there is no statistical relationship between ξ and d.

J.M. McFarland, L.P. Swiler, and V.J. Romero 159

distribution. Each component of θ can be sampled using the Metropolis algorithm, by sam-
pling the ith component from its full conditional:

f (θi | θ−i, ξ, d) ∝ π(θ)L(θ; ξ), (2.8)

where θ−i contains all components of θ except for θi. Notice that f (ξ) does not appear in
Eq. (2.8) because it does not depend on θ.

Further, if the joint distribution of ξ is sampleable (in particular, if the components of
ξ are independent, with sampleable marginals), the vector ξ can be directly sampled at each
iteration. This is because the full conditional of ξ is equal to f (ξ), so at each iteration we
draw a sample of ξ from f (ξ), which is its full conditional.

In short, the process for accounting for prescribed input uncertainties within the Bayesian
calibration analysis is very simple, given that Markov Chain Monte Carlo is used to construct
the posterior for θ. To account for the additional total uncertainty introduced by the inputs, ξ,
having prescribed uncertainties, we simply sample a random realization of ξ at each iteration
of the MCMC sampler.

3. Case study: Calore thermal simulation. To illustrate the Bayesian calibration
methodology, we use a thermal simulation of a canister containing a mock weapons com-
ponent encapsulated by a foam insulation (a.k.a. “foam in a can”). A series of experiments
have been conducted at Sandia National Laboratories in an effort to support the physical char-
acterization and modeling of thermally decomposing foam [6]. Several illustrations of this
setup are shown in Figure 3.1. An associated thermal model, using the Calore code, is de-
scribed in [13]. Calore is a computational heat transfer code being developed at Sandia under
the ASC (Advanced Simulation and Computing Program) of the NNSA (National Nuclear
Security Administration) [3]. Calore approximates linear and nonlinear continuum models of
heat transfer, with the main governing equation being the energy conservation equation.

F. 3.1. Illustrations of the “foam in a can” system

The Calore thermal simulation has been configured to model the “foam in a can” exper-
iment, but several of the simulation input parameters are still unknowns. In particular, we
consider five calibration parameters: q2, q3, q4, q5, and FPD. The parameters q2 through
q5 describe the applied heat flux boundary condition, which is not well-characterized in the
experiments. The last calibration parameter, FPD, represents the foam final pore diameter,
and is the parameter of most interest, because it will play a role in the ultimate modeling and
prediction process. We want to consider the calibration of the Calore simulation for the tem-
perature response up to 2200 seconds at nine different locations on the structure (six external
and three internal).

160 Calibration under Uncertainty

3.1. Preliminary analysis. The first step is to collect a database of Calore simulation
runs for different values of the calibration parameters. Ideally, we would like our design to
provide good coverage for the posterior distribution of the calibration inputs. However, since
we don’t know the form of the posterior beforehand, we have to begin with an initial guess
for the appropriate design.

Fortunately the method provides feedback, so if our original bounds are not adequate,
they can be revised appropriately. This type of sequential approach has been discussed by
[10] for Bayesian model calibration, and other examples are available in [2, 5, 1]. For our
initial design, we used the DAKOTA software package to generate an LHS sample of size 50
using the variable bounds listed in Table 3.1.

T 3.1
Original design of computer experiments

Variable Lower bound Upper bound
FPD 2.0 × 10−3 15.0 × 10−3

q2 25,000 150,000
q3 100,000 220,000
q4 150,000 300,000
q5 50,000 220,000

The Bayesian calibration using these bounds illustrated that some adjustment to the
bounds would be useful. Thus, we constructed a new LHS sample of size 50 using the revised
design described in Table 3.2. The revised bounds are chosen so that they will cover the entire
range of the posterior distribution for the calibration inputs.

T 3.2
Revised design of computer experiments

Variable Lower bound Upper bound
FPD 4.0 × 10−3 6.0 × 10−3

q2 25,000 150,000
q3 0 200,000
q4 100,000 400,000
q5 120,000 160,000

Using the results from the simulation runs, we can compare the ensemble of predicted
time histories against the experimental time histories to see if the experimental data are “en-
veloped” by the simulation data. An example of this comparison is shown in Figures 3.2.

3.2. Bayesian calibration analysis: nominal case. Here we consider the Bayesian cal-
ibration using data from all nine “locations” of interest. Some of these “locations” (for exam-
ple, location 1) are averages of multiple thermocouple readings, while others represent single
thermocouple readings. For the analysis described here, the variance of ε is not a function
of time, and is the same at each location: the result is that all of the experimental data are
weighed equally. However, the variance of ε is still treated as an unknown, and is allowed
to develop a posterior distribution along with the rest of the calibration parameters. For our
prior distributions on the calibration parameters, we choose independent uniform distributions
based on the bounds given in Table 3.1.

Each of the nine “locations” are modeled separately with two independent surrogates
representing the response before and after 500 seconds, which results in a total of 18 surro-
gate models for the Calore output. We employ the use of multiple Gaussian process surrogate

J.M. McFarland, L.P. Swiler, and V.J. Romero 161

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000

Te
m

pe
ra

tu
re

 (K
)

Time (seconds)

Calore simulations
Experimental data

F. 3.2. Location 1: Average lid temperature

models because a single stationary Gaussian process representation of the response at all
locations and time instances does not seem to be appropriate. Our choice of dividing the sur-
rogates at 500 seconds is admittedly subjective (and a more comprehensive approach might
choose different time divisions for different locations), but on average for the different lo-
cations, the process variance increases significantly around 500 seconds, and the correlation
length with respect to time tends to increase as well for the latter part of the response.

For each surrogate, we employ an iterative algorithm to select an optimal subset of points
with which to build the surrogate. At each location, the first surrogate is based on 75 points
chosen optimally from the 1,950 available points (39 time instances × 50 LHS samples),
while the second is based on 100 points chosen optimally from 8,550 points.

For the experimental data, we use 21 points evenly spaced at time intervals of 100 sec-
onds for each of the 9 locations. The MCMC simulation is adjusted appropriately and run
for 100,000 iterations. The resulting marginal posterior distributions for the parameter of
interest, FPD, is shown in Figure 3.3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.004 0.0045 0.005 0.0055 0.006

Fr
eq

ue
nc

y

FPD

F. 3.3. Histogram of posterior samples for FPD

The statistics of the marginal posteriors are given in Table 3.3, and the pairwise correla-
tion coefficients are given in Table 3.4. The correlation coefficients indicate a strong negative
relationship between q2 and q3, as well as moderate negative relationships between FPD and

162 Calibration under Uncertainty

q5, and q3 and q4.

T 3.3
Posterior statistics based on the nominal calibration analysis

Variable Mean Std. Dev.
FPD 5.22 × 10−3 1.17 × 10−4

q2 88,546 16,977
q3 113,100 11,307
q4 246,270 11,652
q5 138,390 1,565

T 3.4
Pairwise correlation coefficients within the posterior distribution for the calibration of location 7

FPD q2 q3 q4 q5

FPD 1.00 0.02 0.02 -0.25 -0.67
q2 0.02 1.00 -0.80 0.18 -0.02
q3 0.02 -0.80 1.00 -0.58 -0.01
q4 -0.25 0.18 -0.58 1.00 0.00
q5 -0.67 -0.02 -0.01 0.00 1.00

The total RMS agreement at all nine locations, based on the surrogate predictions at
the posterior mean of the calibration inputs is 19.0. As a check on the surrogates, the total
RMS based on the true Calore output, using the same inputs, is 18.9, which agrees well with
that based on the surrogates. Finally, we note that agreement with the experimental data
based on the posterior mean is significantly better than what was achieved using the global
optimization algorithm DIRECT: after 65 runs of the Calore simulation, the best fit found
by DIRECT had a total RMS of 32.3. Thus, the Bayesian approach used less total function
evaluations than the least-squares point estimation approach (in which no surrogate was used
for the optimization), found a better point estimate to the unknowns, and provides much more
information about uncertainty present in the final solution.

3.3. Adding prescribed input uncertainties. In this section we extend the preceding
analysis to include additional modeling uncertainties, as discussed in Section 2.2.1. While we
have so far considered the calibration of five model inputs, there are actually many additional
inputs to the Calore simulation which are subject to uncertainty or lack of knowledge. Here
we study the effect on the calibration results when we treat thirteen additional model inputs as
having prescribed uncertainties (in this case simply feasible bounds, represented by uniform
probability density functions).

While it is also possible to treat these additional model inputs as calibration parameters,
along with the original five, the primary reason for holding their uncertainties fixed is simply
because there is an interest in knowing what effect this will have on the results. On the other
hand, if they are treated as additional calibration parameters, their prior uncertainties may be
reduced in light of the data d, which would not give a picture of the effect of the prescribed
uncertainties. Nevertheless, we conduct each of these analyses, as well as one “control”
analysis, for comparison:

1. To make a fair comparison, we first conduct the analysis while holding the additional
uncertain inputs fixed at their mean values. Although conceptually the same as the
analysis discussed in Section 3.2, it is based on a different set of training data, and the

J.M. McFarland, L.P. Swiler, and V.J. Romero 163

surrogates must now model the relationship between the additional thirteen inputs
and the response, which we expect to result in additional overall uncertainty.

2. Using the method outlined in Section 2.2.1, we perform the analysis while allowing
the additional inputs to vary according to their prescribed uncertainty distributions.

3. For comparison, we also perform the analysis in which the additional thirteen inputs
are treated as calibration parameters, along with the original five.

The first step is to collect a new set Calore simulation data, which is necessary because
the Gaussian process surrogates must now model the relationship between the temperature
response and the thirteen new inputs, in addition to the five original calibration inputs. This
results in a design of computer experiments over eighteen total variables, and surrogates that
are based on nineteen inputs (since time is an input to the surrogates). We use a random
LHS sample of size 50, with the bounds for the original parameters shown in Table 3.5 (for
brevity, the information on the thirteen additional parameters is not shown). Generous bounds
are used for the calibration parameters, since it is not known how much extra uncertainty will
be introduced by the additional uncertain inputs.

T 3.5
Design of computer experiments for study with additional prescribed input uncertainties (specifications for

additional thirteen inputs not listed)

Variable Lower bound Upper bound
FPD 2.0 × 10−3 10.0 × 10−3

q2 0 200,000
q3 0 200,000
q4 100,000 400,000
q5 50,000 200,000

With the new code runs, we use the same structure for our surrogates as before: two
surrogates (for response before and after 500 seconds) are used at each of nine locations on
the structure, for a total of eighteen surrogate models. We emphasize that the surrogates
capture the temperature response as a function of time, the five original calibration inputs,
and the thirteen additional uncertain inputs. We again employ the iterative point selection
process, and this time between 40 and 128 points are used for each surrogate, depending on
the complexity of the response.

Each of the three analyses described above are then conducted. For each case, we use
50,000 MCMC samples to construct the posterior. We note that these analyses are consider-
ably more expensive than those described in Section 3.2. Of the three, the most expensive
is the third case, in which the new inputs are treated as calibration inputs: the computa-
tional cost here is high because the MCMC sampler must evaluate the likelihood ratio (see
Eq. (2.5)) once per iteration for each calibration input. Running on a Linux machine with a
64-bit, 2.4GHz processor, the third analysis took approximately 30 hours, while the first two
took on the order of 10 hours each.

Since the calibration parameter FPD is of most interest for the Calore simulation, we
illustrate its posterior distribution in Figure 3.4, comparing each of the methods described
above.

4. Conclusions. The important role that computational models play in prediction, de-
sign, and decision making necessitates appropriate methods for assessing the uncertainty in
such predictions. This work has explored the use of Bayesian model calibration as a tool for
calibrating a computational simulation with experimental observations, while at the same time
keeping track of the uncertainty that is introduced in the process. We have also shown how

164 Calibration under Uncertainty

0.002 0.004 0.006 0.008 0.010

0
10

00
20

00
30

00
40

00

FPD

De
ns

ity

Means
Varying
Calibrated

F. 3.4. Comparison of posterior distribution of FPD for each of three approaches for treating the thirteen
additional uncertain model inputs

Gaussian process surrogate models can be used in place of an expensive simulation. Finally,
we have developed a method which enables us to account for prescribed modeling uncertain-
ties. We have applied this methodology to an expensive thermal simulation of “foam in a
can” with a database of time-dependent experimental observations, and the results illustrate
the promise of the methodology for uncertainty quantification and model calibration.

Acknowledgment. John McFarland would like to acknowledge helpful discussions with
Youssef Marzouk regarding the theory underlying the Bayesian analysis of inverse problems
(such as model calibration).

REFERENCES

[1] R. A, R. J. B, S. G. D, J. S, W. J. W, Circuit optimization via sequential computer
experiments: design of an output buffer, Applied Statistics, 47 (1998), pp. 31–48.

[2] M. C. B, R. J. B, L. L, W. A. N, J. S,  W. J. W, Integrated circuit design
optimization using a sequential strategy, IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, 11 (1992), pp. 361–372.

[3] S. W. B, K. D. C,  C. K. N, Calore: A computational heat transfer program, vol. 1: A theory
manual and vol. 2, a user reference manual v. 4.3, Sandia National Laboratories Technical Report, 2006-
6083P (2006).

[4] S. C  E. G, Understanding the Metropolis-Hastings algorithm, American Statistician, 49
(1995), pp. 327–335.

[5] P. S. C, M. G, A. H. S,  J. A. S, Bayes linear strategies for matching hydrocarbon
reservoir history, in Bayesian Statistics 5, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith,
eds., Oxford University Press, Oxford, 1996, pp. 69–95.

[6] K. L. E, S. M. T, J. B. O, C. R. H, B. B,  D. M. R, Component-scale
removable epoxy foam thermal decomposition experiments part 1: Temperature data, Sandia National
Laboratories Technical Report, (2007, in revision).

[7] W. R. G, S. R,  D. J. S, Markov Chain Monte Carlo in Practice, Chapman and
Hall/CRC, Boca Raton, 1996.

[8] A. A. G, J. M. MF, L. P. S, M. S. E, The promise and peril of uncertainty quan-
tification using response surface approximations, Structure and Infrastructure Engineering, 2 (2006),
pp. 175–189.

J.M. McFarland, L.P. Swiler, and V.J. Romero 165

[9] W. K. H, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57
(1970), pp. 97–109.

[10] M. C. K  A. O’H, Bayesian calibration of computer models, Journal of the Royal Statistical
Society B, 63 (2001).

[11] N. M, A. R, M. R, A. T,  E. T, Equations of state calculations by
fast computing machines, Journal of Chemical Physics, 21 (1953), pp. 1087–1092.

[12] C. R, Evaluation of Gaussian processes and other methods for non-linear regression, PhD thesis,
University of Toronto, 1996.

[13] V. J. R, J. W. S,  M. P. S, Modeling boundary conditions and thermocouple response
in a thermal experiment, ASME paper IMECE2006-15046, 2006 International Mechanical Engineering
Congress and Exposition, Nov. 5-10, Chicago, IL (2006).

[14] A. V  R. C, Simultaneous confidence and prediction intervals for nonlinear regression models,
with application to a groundwater flow model, Water Resources Research, 23 (1987), pp. 1237–1250.

CSRI Summer Proceedings 2007 166

MESH OPTIMIZATION FOR CURVED DOMAINS
WITH TARGET-MATRIX PARADIGM

HALE ERTEN† AND PATRICK M. KNUPP‡

Abstract. In order to have more accurate discretization models for physical domains with curved boundaries,
we address an important problem involving meshes on curved boundaries. Our method uses advantages of recently
introduced “target-matrix” paradigm and mesh optimization techniques to provide quality meshes which are de-
pending on relative size and ideal shape constraints. The proposed approach is applied to linear triangular elements.
Possible extensions to the quadratic-element case for two-dimensional domains are discussed. Examples illustrate
the behavior of the method whose goal is to untangle initial meshes near the boundary, as well as to produce good
quality elements. The improvement approach involves node-movement by optimizing the objective function based
on a non-barrier shape and size metric. We offer thoughts on using this procedure for real life applications in three-
dimensions.

1. Introduction. Finite element methods have been widely used throughout the years
in engineering simulations. A major requirement is that the discretization should represent
the physical domain accurately. Higher-order elements can be used, such as those discussed
in [10], to overcome this problem which can be critical for many applications. This approach
requires appropriate mesh quality on the boundary, where the high-order elements are often
located. In the next section we formulate the basic problem. This is followed by a brief
literature survey, and a description of our proposed approach for the linear element case.
Results for linear three-point triangular element meshes will be given, and possible extensions
to the quadratic case will be discussed.

1.1. Problem Definition. We describe the basic problem in Figure 1.1. As can be seen
from the figure, an element edge outside physical boundaries is likely to happen in both two
and three-dimensional meshes which can lead to inaccurate results or problems during finite
element calculations.

boundary
outside

F. 1.1. Around boundary region of a computed triangular mesh, an element whose edge is outside the physical
boundary.

Having an element outside the geometric boundary, is more likely when we have curved
domains. In order to solve this problem, a detection method is needed for finding poor quality
elements. Once these are found, there should be methods to fix these elements. For the
detection part, the first thing that occurs to us is to use the determinant of the Jacobian of

†University of Florida Computer Info. and Sciences & Engineering, herten@cise.ufl.edu
‡Sandia National Laboratories, pknupp@sandia.gov

H. Erten and P.M. Knupp 167

the map on each element, satisfying positivity at Gauss points of the element. If we have an
invalid element based on this detection criteria, the following operations could be considered
to fix them: (a) swap(edge/element) (b) h-refinement (c) curving (d) collapsing (e) moving
nodes. These operations were considered in solving a similar problem in [7, 3, 8]. In this
paper we focus exclusively on the latter technique because it has not been investigated as
carefully as the other operations. Untangling higher-order elements are a critical part of the
problem and will be considered first.

1.2. Previous Work. For curved boundary domains, generating meshes having quality
constraints requires additional effort to have better accuracy for finite element analysis ap-
plications. Boundary-intersecting elements can lead to inaccurate results in finite element
method. For curved domains, different kinds of approaches have recently emerged. Shephard
et al. investigate this issue in several papers [7, 3, 8], focusing on p-version mesh generation
for curved domains mostly in three-dimensional meshes. In [3], not only detecting element
interferences due to curved features of the elements are discussed, but also element-modifying
methods for obtaining valid curvilinear meshes for applications are introduced.

Apart from using the Jacobian matrix properties, [7, 3, 8] considers the benefits of using
Bezier curves for element edges instead of normal quadratic interpolations. Problematic cases
are described and for each of them, a suitable solution is proposed, like edge swapping, face
swapping, edge deletion, etc. Vertex relocation is not considered in depth in these references.

Branets and Carey studied a related problem from a metric point of view. They recently
introduced a local quality metric [1], along with a smoothing algorithm. It has been modified
for elements having curved boundary edge or surface [2]. Again, the Jacobian matrix has
been used as a part of the quality metric representing a linear combination of shape distor-
tion and dilation metric. For invalid elements, the metric has been extended by setting its
value to infinity for those elements. Most importantly, [2] gives necessary conditions to have
non-degenerate mapping for two and three-dimensional triangular and tetrahedral quadratic
elements respectively as well as similar discussions about quadrilateral meshes. The new can
help to find degeneracies and element distortion. The study does not consider the case of
initially tangled meshes.

Aside from the above-mentioned studies, quadratic curved meshes for curved boundary
domains are little considered in the literature (but see [10, 9]).

There are several quality metrics which can be adapted to this problem to eliminate in-
valid elements by local or global optimization techniques. Knupp showed that quality met-
rics can be represented algebraically depending on the Jacobian matrix of the elements [5].
Continuing this algebraic approach, same author introduced the “target-matrix” paradigm for
mesh optimization [4]. By using target, active, and weighted-active matrices, mesh optimiza-
tion under an objective function can be very effective. Important concepts, such as being a
barrier or a non-barrier metric, are defined and their essential behaviors were discussed in [6]
while introducing local two-dimensional metrics to be used in objective functions.

2. Proposed Solution. Our method is based on the idea of relocating f ree element ver-
tices depending on an objective function. The first thing we need to consider is choosing the
appropriate metric on which to base our objective function. Apart from the objective function,
our method of detecting invalid elements and deciding which vertices are to be f ree is critical
to the success of the method. As mentioned in the previous section, the determinant of the
Jacobian Matrix should be positive (det J > 0) in order to have valid or untangled elements.
For linear finite element case, the determinant will be constant on simplicial elements, but for
the quadratic element case, det J varies, even for simplicial elements. Thus, it is more difficult
to decide whether or not a quadratic element is valid. One way to do this is to require that
det J be positive at all the Gauss points of the element or, more generally, at selected sample

168 Mesh Optimization for Curved Domains

points within the element. Another important consideration is the question of which nodes
and vertices within an element ones should be considered f ree nodes and which should be
fixed. Since we focus on the boundary, moving mid-side nodes and corner vertices not owned
by the boundary can be a suitable solution. There are many combinations to consider, but
since this work is intended as only an initial exploration, this question will be studied later.
For now, we will mainly focus on trying to explore the behavior of the method by applying it
on linear elements.

2.1. Metric. We have noted that, second author described the use of “target-matrix”
paradigm in [4] while mentioning the advantages of using algebraic properties of mesh ele-
ments. In the continuation of this work [6], two-dimensional metrics have been used to con-
struct objective functions for mesh optimization. Their characteristic properties are pointed
out and the difference between barrier and non-barrier metrics was emphasized.

For our problem, we can first consider untanglers, like (2.1) or (2.2). But, it is known
that these do not always work, although they do relatively well on local patches, which could
be the case if one is interested in improving a local mesh near the boundary. The objective
functions are

min F =
∑

k

(|αk | − αk) ≥ 0, (2.1)

max {min αk}, (2.2)

where A : Jacobian Matrix, α = det A, and k is an element index which runs over a local patch
of elements. However, these metrics do not improve shape-quality.

We can also consider a metric which improves shape, like mean ratio (2.3), but this metric
requires the initial mesh to be untangled.

min F =
∑

k

||Ak ||
2
F

2 ∗ αk
i f αk > 0, (2.3)

Because the boundary mesh is likely to be tangled, we will instead use a non-barrier form of
the shape and size metric as follows:

µ = ||T ||2F −
√
||T ||2F + 2 ∗ τ + 2, (2.4)

where T = A ∗ W−1, τ = det T , and || · ||F is the Euclidean (Frobenius) matrix norm [6].
With an appropriately constructed target matrix, this metric should make it possible to both
untangle and improve the shape quality of the boundary elements.

In this metric, note that W can vary from one element to another, according to the size
of the element in the initial mesh. It has the interval from 0, for ideal element, to ∞, for
highly invalid element; so that optimization will try to reach minimum value which is 0. If
the minimum is attained, A = RW, i.e., the Jacobian matrix within the physical element will
equal the target matrix, up to an arbitrary rotation.

As a review, Figure 2.1 shows the target, active and weight matrices in the Target Matrix
paradigm.

2.2. Method. We begin by constructing an appropriate target matrix for each element.
Basically, we will start with a W based on an ideal element with unit length, that we will
scale according to size of the physical element. Since we are scaling the target matrix based
on area, this will produce elements sized relative to their initial sizes in optimized mesh. If

H. Erten and P.M. Knupp 169

Logical
Element

Ideal
Element

Physical
Element

A

W T

F. 2.1. The relationship between target, active and weight matrices in terms of mapping between elements.

an application needs differently sized elements in different regions of the domain, the scaled
target will preserve this initial mesh heterogeneity even after the optimization process.

After calculating suitable target matrices, metric value for each element should be com-
puted to produce objective value to be minimized. That is, optimization algorithms can be
used to optimize the locations of free points to have better shaped and sized elements.

Notice that, the scaling factor for target matrix can be selected by different schemes.
Following section will illustrate the differences of proposed three different schemes as well
as show some examples of above mentioned optimization algorithm.

2.3. Schemes and Results. One of the most important parts of our method is having
an appropriate target matrix, which can be done using many schemes. We describe three
reasonable construction schemes in detail.

2.3.1. Target Construction Algorithms. We begin with a general W matrix which rep-
resents the mapping between right triangle to a unit equilateral triangle. This can be consid-
ered as the mapping from the logical to the ideal element.

The steps for scaling W can be given as follows:

• Set

W =
(

1 0.5
0
√

3/2

)

• W ′ = c ∗W, where c : constant

c =
2 ∗
√

Areai

31/4 (2.5)

c =
2 ∗
√

det Ai/2
31/4 (2.6)

We can rewrite above relation in terms of determinants:

det W ′ = c2 ∗ det W =
4 ∗ Areai

31/2 (2.7)

• Areai : Area of the element i, which can be calculated using the three vertices of the
triangle as follows:

Area(4) =
√

s(s − a)(s − b)(s − c), (2.8)

where s = 1
2 (a + b + c) and a, b, c : found by Euclidean distance formula from the

vertices of the edges

170 Mesh Optimization for Curved Domains

a c

b

3

21

F. 2.2. Simple triangle.

This area calculation always gives positive values, but when our initial mesh has inverted
elements, we need to be aware of that situation. Therefore, signed area calculation must be
made which is exactly equivalent to above area calculation except signed information. In
other words,

Area(4) = | det(4)|/2 (2.9)

As we have mentioned earlier, initially tangled meshes must be detected and our ap-
proach must untangle the elements. Several different schemes for this goal can be introduced,
three logical and efficient schemes are given. Remember that after finding the Areai for each
element, we will be finding the corresponding update constant c to modify the unscaled W
appropriately.

• Possible schemes for c:

(I) Absolute Value Area

Areai : calculate from 3-side lengths ≥ 0

Areai = | det Ai|/2 (2.10)

Overall, it will be

Areai =

{
(−1) ∗ det Ai/2, if det Ai < 0

det Ai/2, otherwise (2.11)

This approach has the advantage of being a quick fix to the problem and gives relative size
of the untangled version, since at least it has some information from the topology. However,
it is not exactly correct, because some areas are counted twice or more by this way. This
scheme has another drawback which is depicted as Example #4 in the next section, such that
positive area can lead to larger elements than mesh boundaries causing tangled elements.

(II) Global Average Area

Areai : average element area

Areai =
Atotal

N
, if det Ai < 0 (2.12)

Overall, it will be

Areai =

{ Atotal
N , if det Ai < 0

det Ai/2, otherwise
(2.13)

Note that, while calculating Atotal, we will be using signed area (det Ai/2). If the mesh is
nearly structured, this method can be a good idea, since it will give some information about

H. Erten and P.M. Knupp 171

overall topology. On the other hand, the mesh can have a tangled area having large triangles,
whereas the average area is too small. Although it is not usually possible, this can yield
skinny elements at the end when we untangled the mesh, but the above-mentioned problem
about Example #4, will not appear.

(III) Patch Average Area

Areai : average element area based on patch of the inverted element

Areai =
ApatchTotal

Npatch
, if det Ai < 0 (2.14)

Overall, it will be

Areai =

 ApatchTotal

Npatch
, if det Ai < 0

det Ai/2, otherwise
(2.15)

Note that, while calculating ApatchTotal, we will be using signed area (det Ai/2).
For an inverted element, find the connected patch of each corner points and after calcu-

lating their signed area, compute the average area value. This will be used for determining
target matrix W. This is more complicated, however it can give better results in comparison
to first approach.

• Pseudo-code for general algorithm:
Input: Initial Mesh Elements
Output: W matrix for each element
———————————————————————————————–
Begin

Set

W =
(

1 0.5
0
√

3/2

)
totalArea = 0
Foreach Triangular Element i

Find det Ai, record in an array
totalArea+ = det Ai/2

End Foreach
Foreach Triangular Element i

if det Ai < 0
then c = 2∗

√
(−1)∗det Ai/2

31/4 // for absolute value scheme

or c =
2∗
√

totalArea/numberO f Elements
31/4 // for global average scheme

or find patches of the corners

calculate average element area in these patches

c =
2∗
√

averagePatchAreai

31/4 // for average patch area scheme

else
c = 2∗

√
det Ai/2
31/4

End Foreach
Wi = c ∗W
End
———————————————————————————————–

172 Mesh Optimization for Curved Domains

F. 2.3. Input data set (Example #1) F. 2.4. Absolute Value (Example #1)

F. 2.5. Global Average (Example #1) F. 2.6. Patch Average (Example #1)

We should point out that this algorithm works for both tangled and untangled initial
meshes. The former case is just a special case of the latter.

2.3.2. Examples. In this section, examples depict the differences between the three
above mentioned target metric construction methods. Tables showing various quality met-
ric value allow comparisons between the initial mesh and resulting meshes after optimization
using corresponding target matrix construction schemes. The quality metrics in the Table
are: the average, maximum and minimum element area values and minimum element angle
degrees as well as initial and final objective function values after optimization process.

Example #1: Unstructured mesh in a square domain (Containing tangled elements)
Our metric successfully untangles the mesh and optimizes according to given schemes as in
figures. Statistics related to initial and final meshes can be seen from the table. (Figure 2.3,
Figure 2.4, Figure 2.5, Figure 2.6; Table 4.1)

Example #2: Unstructured mesh with curved boundary domain (Containing NO tangled
elements) Our metric successfully optimizes the mesh according to given absolute value area
scheme. Since there is no inverted element whose det J < 0, therefore we do not need to run
the other schemes which will give the same resulting mesh. (Figure 2.7, Figure 2.8; Table
4.2)

Example #3: Unstructured mesh with curved boundary domain (Containing tangled
elements) Our metric successfully untangles the mesh and optimizes the mesh according to
given schemes. (Figure 2.9, Figure 2.10, Figure 2.11, Figure 2.12; Table 4.3)

Example #4: Unstructured mesh with curved boundary domain (Extremely inverted el-
ements) When we have an extremely bad inverted element, our metric does not succeed in
untangling the initial mesh under first and third schemes. The reason may possibly be because
the inverted element areas are very large, resulting in large values in the target matrix W; then

H. Erten and P.M. Knupp 173

F. 2.7. Input data set (Example #2) F. 2.8. Absolute Value (Example #2)

F. 2.9. Input data set (Example #3) F. 2.10. Absolute Value (Example #3)

optimization based on the target (which is poorly chosen) will again make the elements tan-
gled. The relative ratio between the untangled element areas and the tangled element areas
is significant; that will result in failure of the untangling step. The second scheme succeeds
because it considers the total polygonal area when we have a valid initial mesh. (Figure 2.13,
[Close-ups] Figure 2.14, Figure 2.15, Figure 2.16; Table 4.4)

3. Quadratic Elements. We have seen from the examples above, our metric works
more or less as expected for the linear element case. Target construction is critical to success.
To extend this approach to the case of quadratic elements, our method will include sample
points, defined within the master element, whose purpose is to sample the local quality at
various points within the physical element. It is expected that, by attempting to improve
quality at all the sample points, problematic quadratic elements near the boundary will be
eliminated. Another important ingredient in this approach will be to determine which nodes
and vertices within an element should be permitted to be f ree. There are many potential
combinations to consider before proposing a final algorithm.

Although, this work does not contain results about the quadratic case, we expect similar
behavior as with the linear case. In order to have a more efficient algorithm, we can use
linear elements inside regions. In other words, just the boundary-related elements can be
defined with six nodes, whereas the others can just be ordinary three-node triangles. This
will naturally require different cases to be handled in algorithm, since hybrid mesh elements
can affect each other in several ways.

4. Future Work. Most of the geometric models contain curved boundaries that need
to be handled in a more careful way in terms of the mesh. We have introduced prelim-
inary results towards having quality meshes in such domains by using a “target-matrix”
paradigm-inspired objective function. In the future, we want to explore our method in
quadratic triangular meshes in two dimensions and quadratic tetrahedra in three dimensions.
Additionally, a similar approach could perhaps be used to optimize quadratic quadrilateral
mesh elements as well as their three-dimensional hexahedral counterparts. As the next step
our method’s behavior on quadratic two-dimensional triangle elements should be understood
clearly to be able to continue to three-dimensional mesh elements. Note that, the later case
will have more degrees of freedom as well as additional cases, such as surface interferences
in addition to edge boundary conflicts in two-dimensional case.

174 Mesh Optimization for Curved Domains

F. 2.11. Global Average (Example #3) F. 2.12. Patch Average (Example #3)

X

Y

Z

F. 2.13. Input data set (Example #4)

F. 2.14. Absolute Value (Example #4)

F. 2.15. Global Average (Example #4) F. 2.16. Patch Average (Example #4)

T 4.1
Comparison of different schemes for Example #1

Area Initial Absolute Global Average Patch Average
Average 0.0192308 0.0192308 0.0192308 0.0192308

Max 0.057672 0.046239 0.0448294 0.0447587
Min -0.0368821 0.00480185 0.0060206 0.00602475

Min Angle Initial Absolute Global Average Patch Average
Average 38.7463 41.9124 43.6603 43.6659

Max 57.2982 56.7738 57.8124 57.8742
Min 1.67618 16.9158 28.2249 28.219

Obj.Func.Val. 64.884 11.4389 9.67038 9.69442

T 4.2
Comparison of different schemes for Example #2

Area Initial Absolute Global Average Patch Average
Average 0.0007667 0.0007667 0.0007667 0.0007667

Max 0.00381743 0.00417208 0.00417208 0.00417208
Min 5.09701e-05 7.02992e-05 7.02992e-05 7.02992e-05

Min Angle Initial Absolute Global Average Patch Average
Average 39.9638 44.4628 44.4628 44.4628

Max 58.6392 57.7607 57.7607 57.7607
Min 11.0711 26.9858 26.9858 26.9858

Obj.Func.Val. 56.3769 33.1737 33.1737 33.1737

H. Erten and P.M. Knupp 175

T 4.3
Comparison of different schemes for Example #3

Area Initial Absolute Global Average Patch Average
Average 0.00199746 0.00199746 0.00199746 0.00199746

Max 0.0168338 0.00810362 0.00824869 0.00844283
Min -0.0107991 0.000352017 0.000352017 0.000352017

Min Angle Initial Absolute Global Average Patch Average
Average 35.2685 39.8439 39.6595 40.045

Max 57.6292 59.4528 59.4528 59.4528
Min 0.689214 18.8607 18.86 18.8555

Obj.Func.Val. 197.369 20.8239 20.2379 20.0906

T 4.4
Comparison of different schemes for Example #4

Area Initial Absolute Global Average Patch Average
Average 0.00199746 0.00199746 0.00199746 0.00199746

Max 0.0768827 0.00817313 0.0081784 0.00796626
Min -0.12003 -0.0051679 0.000352017 -0.000668633

Min Angle Initial Absolute Global Average Patch Average
Average 34.9136 38.0154 39.6869 38.0637

Max 57.6292 59.4528 59.4528 59.4528
Min 0.0882529 0.705251 18.9284 2.3893

Obj.Func.Val. 1329.18 24.0698 23.3629 23.90.12

REFERENCES

[1] L. B  G. F. C, A local cell quality metric and variational grid smoothing algorithm, Procedings
of the 12th International Meshing Roundtable, (2003), pp. 371–378.

[2] , Extension of a mesh quality metric for elements with a curved boundary edge or surface, Journal of
Computing and Information Science in Engineering, 5 (2005), pp. 302–308.

[3] S. D, R. M. O’B,  M. S. S, Towards curvilinear meashing in 3d: The case of quadratic
simplices, Computer Aided Design, 33 (2001), pp. 199–209.

[4] P. M. K, Formulation of a target-matrix paradigm for mesh optimization, Submitted.
[5] , Algebraic mesh quality metrics, SIAM Journal on Scientific Computing, 23 (2001), pp. 193–218.
[6] P. M. K  U. H, Local 2d metrics for mesh optimization in the target-matrix paradigm, Sub-

mitted.
[7] X.-J. L, M. S. S, R. M. O’B, R. N, M. W. B, Automatic p-version mesh genera-

tion for curved domains, Engineering with Computers, 20 (2004), pp. 273–285.
[8] X.-J. L, M. S. S,  J.-F. R, p-version mesh generation issues, Proceeding of the 11th

International Meshing Roundtable, (2002), pp. 343–354.
[9] M. S. S. S D  J. E. F, Geometry representation issues associated with p-version finite

element computations, Computer Methods in Applied Mechanics and Engineering, 150 (1997), pp. 39–
55.

[10] S. S  J. P, Mesh generation in curvilinear domains using high-order elements, Intenational
Journal for Numerical Methods in Engineering, 53 (2002), pp. 207–223.

CSRI Summer Proceedings 2007 176

A METHOD OF MANUFACTURED SOLUTIONS FOR
PDES WITH STOCHASTIC INPUTS

PAUL CONSTANTINE∗ AND PATRICK M. KNUPP †

Abstract. Partial differential equations with stochastic inputs have become popular for modeling engineering
systems with uncertain input parameters. As a result of this popularity, the uncertainty quantification community
has developed powerful numerical techniques to approximate statistics of the solutions to these systems. However,
very little work has gone into verifying the computation of these statistics. In this paper, we apply the method of
manufactured solutions – a technique for verifying the convergence rate of the numerical solution of a deterministic
system – to the stochastic case in order to verify the convergence of the computed statistics.

1. Introduction. In many – if not most – modern engineering applications, the quanti-
ties determining the behavior of the engineering system are known with only a relative degree
of certainty. Instead of trying to account for these uncertainties in the models, the typical
practitioner will simply choose to use mean quantities or impose safety factors for critical
parameters. Recently, in the search for more realistic and accurate models, many researchers
have used a probabilistic framework to incorporate the uncertainties. One common approach
is to represent the uncertain inputs as random processes and replace the deterministic pa-
rameters in the existing modeling equations. These uncertain inputs may include boundary
conditions, domain specifications, forcing terms, or equation parameters describing material
properties. By introducing randomness into the models, the solution to the governing equa-
tions becomes random itself. Then the objective is to quantify the uncertainty in the random
solution. This typically involves computing approximate moments of the solution, though in
some cases one may want an approximate probability density function and information de-
rived from that, e.g. the probability that a quantity of interest exceeds some critical value. In
this paper we focus on computation of the moments.

There are a number of existing techniques for approximating the moments. The sim-
plest is a Monte Carlo approach, where the random quantities are sampled according to their
distribution. For each realization of the random quantity, a deterministic system is solved.
The results from the uncoupled deterministic solutions are then post-processed to compute
the approximate moments. One technique that has risen to prominence in the uncertainty
quantification community is the stochastic Galerkin technique [2]. This technique employs a
spectral representation of the random quantities and projects the governing equations onto a
finite set of basis functions, much like the deterministic Galerkin technique. The projection
creates a set of coupled deterministic equations for the coefficients of the spectral expansion
of the solution. The moments are then explicit expressions of the computed coefficients. An-
other technique for approximating the moments, known as stochastic collocation [5], uses
quadrature rules to approximate the multidimensional integrals in probability space that de-
fine the moments. We review these techniques in further detail in section 2.

Each of these techniques has a solid theoretical foundation with analytically determined
convergence rates: the convergence rate of Monte Carlo is proportional to the square root of
the number of samples, the spectral expansion of the random process in stochastic Galerkin
converges to the solution exponentially as the number of terms in the series increases, and
the stochastic collocation approximations converge to the exact integrals exponentially as the
number of points in the quadrature rule increases. The literature describing these techniques
typically demonstrates their convergence rates by applying the technique to a simple prob-
lem with a known solution and producing convergence plots. Most real problems, however,

∗Stanford University, paul.constantine@stanford.edu
†Sandia National Laboratories, pknupp@sandia.gov

P. Constantine and P.M. Knupp 177

do not have a known solution. Given results from a code implementing one of these tech-
niques, how can one be sure that the results are correct, i.e. that there are no mistakes in the
implementation? For complex problems, it is common practice to compare the results from
different techniques to one another; if the results converge to the same answer, then the codes
are verified. We propose a better way.

The method of manufactured solutions [8] is a technique for verifying the convergence
of a given implementation. It has been applied to deterministic problems where convergence
is defined as the approach of the numerical solution to the exact solution as the spatial and
temporal step sizes go to zero. The essence of the technique is to apply the operator of a
given PDE to an arbitrary – or “manufactured” – function. This produces a right hand side
for the PDE which is plugged in to the solver. With an analytically manufactured solution
available, one can perform a grid convergence study with the given code to verify the rate of
convergence. We describe this method in more detail in section 3.

The main contribution of this paper is the application of the method of manufactured so-
lutions to PDEs with stochastic inputs. We devise verification methods for implementations
of the techniques mentioned above that compute moments of the stochastic solutions. The
idea is the same as the deterministic case: apply the stochastic differential operator to an arbi-
trary function producing a stochastic right hand side and perform a convergence study on the
given implementation. We describe the methods in greater detail and give three demonstrative
examples in section 4.

2. Uncertainty Quantification Techniques. In this section we describe in further detail
the three techniques mentioned above for computing the moments of the random solution of
the PDE with random inputs. Each of these techniques has its advantages and disadvantages.
For the sake of comparison and clarity, we present each technique in the context of a model
problem.

LetD ⊂ Rn be a spatial domain, and define a complete probability space (Ω,F ,P). Let ξ
be a vector of i.i.d. random variables with joint probability density function Wξ , and assume
that ξ is measurable with respect to (Ω,F ,P). Let α(x, ξ) be an L2 spatially varying random
process defined onD×Ω such that α(x, ξ) > 0 for all x ∈ D and all possible values of ξ. The
model problem is given by the elliptic equation

∇ · (α(x, ξ)∇u(x, ξ)) = f x ∈ D

with boundary conditions u = 0 ∈ ∂D. Note that the solution u(x, ξ) is a random process.
The objective is then to compute E[u(x, ξ)] and Var[u(x, ξ)].

2.1. Monte Carlo. The Monte Carlo approach is very appealing for its simplicity and
ease of implementation. First choose the number of samples M. Then for j = 1 . . . M, choose
a sample ξ j from the distribution of ξ. With this sample, compute α j = α(x, ξ j). Next solve
the deterministic problem

∇ · (α j(x)∇u j(x)) = f x ∈ D.

Now with the M solutions u j, one can compute unbiased approximations to the moments [7]
as

E[u](x) ≈
1
M

M∑
j=1

u j(x) ≡ µ(x) Var[u](x) ≈
1

M − 1

M∑
j=1

(u j(x) − µ(x))2

One of the primary advantages of this approach is that it is non-intrusive. In other words, this
approach will work with a given deterministic solver without altering the code. It simply uses

178 A Method of Manufactured Solutions for PDEs with Stochastic Inputs

multiple runs of the existing deterministic solver with varying values of the input parameters.
Thus, if the deterministic solver is trusted, then debugging the Monte Carlo approach is rel-
atively straightforward. The primary drawback to this method is the slow convergence rate
proportional to

√
M. If the deterministic solver takes weeks to compute a single solution, then

using M = 10, 000 samples for two significant digits of accuracy in the approximate expecta-
tion is quite unrealistic. There have been attempts to accelerate convergence by “intelligently”
sampling the distributions of the random inputs – such as Latin Hypercube and Hammersley
sampling techniques – but fundamentally these still suffer from the same drawback.

2.2. Stochastic Galerkin. The stochastic Galerkin technique has its roots in the work
of Wiener [10] who expressed an arbitrary Gaussian process as an infinite series of orthog-
onal Hermite polynomials. The polynomials in this series take a vector of Gaussian random
variables as arguments. Ghanem and Spanos [2] utilized a truncated version of this represen-
tation in their stochastic finite element method, which they applied to structural mechanics
problems with Gaussian inputs. In 2002, Xiu and Karniadakis [11] extended this method to
non-Gaussian processes by incorporating the Wiener-Askey family of orthogonal polynomi-
als.

The first step of this method is to represent the random input parameters using a vector
of random variables. If the input is a spatially varying random field, this can involve another
orthogonal expansion - the Karhunen-Loeve expansion [4] - which decomposes the process
into a series based on the eigenpairs of the covariance kernel and a countable set of random
variables. For our model problem, we assume that α is an explicit function of a vector of
random variables ξ, thus avoiding the need for such an expansion.

The next step is to express the solution u as series expansion with a chosen set of orthog-
onal basis functions {Ψ(ξ)} and truncate this series at some predetermined number of terms
N:

u(x, ξ) =
N∑

i=0

ui(x)Ψi(ξ)

The number N is a function of the number n of components of ξ and the highest degree of
basis polynomial m:

N + 1 =
(n + m)!

n!m!
.

The polynomials {Ψ(ξ)} are orthogonal with respect to the joint probability density function
Wξ of ξ and have the following properties.

〈Ψ0〉 = 1, 〈Ψi〉 = 0, i > 0 〈ΨiΨ j〉 = δi j

where 〈·〉 is the expectation operator and δi j is the Kronecker delta. Plug this representation
into the original equation.

∇ ·

α(x, ξ)∇
 N∑

i=0

ui(x)Ψi(ξ)

 = f

Next we perform a Galerkin projection of the equation onto each basis polynomial by multi-
plying both sides by Ψ j and taking the expectation. The orthogonality leaves

N∑
i=0

∇ ·
(
〈Ψ jαΨi〉∇ui

)
= 〈Ψ j f 〉 j = 0, . . . ,N

P. Constantine and P.M. Knupp 179

with boundary conditions ui = 0 ∈ ∂D for i = 0, . . . ,N. Thus we are left with a system of
coupled PDEs for the coefficients {ui} of the truncated expansion. Finally use any suitable
spatial discretization – finite element, finite difference, pseudospectral – to discretize {ui}

and solve the resulting system for the unknown values. If the spatial discretization has P
unknowns, then the full linear system is size P(N + 1) × P(N + 1). Once the coefficients are
known, the moments are computed with the following formulas.

E[u](x) = u0(x) Var[u](x) =
N∑

i=1

u2
i 〈Ψ

2
i 〉

The advantage to this method is that it is known to converge exponentially as N increases, and
it gives highly accurate results. However, by changing the governing equations, one typically
has to alter any existing codes. Thus this is known as an intrusive method. Also, the size
of the problem increases exponentially with increases in either the length of ξ or the highest
degree of interpolating polynomial. If the size of the spatial discretization of the coefficients
is large, this can be disastrous. The resulting linear system may or may not have special
properties such as sparsity that can be exploited.

2.3. Stochastic Collocation. The main idea behind stochastic collocation is the recog-
nition that moments of a random process are simply multidimensional integrals in the proba-
bility space. Therefore we can use any available deterministic quadrature rule to approximate
these integrals. We describe this high-dimensional integration as given in [6]. Suppose f
is a one-dimensional function supported on some domain Γ and Qi(f) is a one-dimensional
quadrature rule

Qi(f) =
mi∑
j=1

wi
j f (xi

j), wi
j ∈ R, xi

j ∈ Γ

that approximates the integral

I(f) =
∫
Γ

f (x)θ(x) dx

where θ(x) is a given weight function. From Q, we can build an n-dimensional rule as follows.
Suppose F(x) is a map from Γn to R where

Γn = Γ1 × · · · × Γn

is a tensor product of one-dimensional domains. Then the integral

Ĩ(F) =
∫
Γn

F(x)Θ(x) dx,

where Θ = θ1 × · · · × θn is the weight function, is approximated by the tensor product rule

Q̃i(F) = (Qi1
1 ⊗ · · · ⊗ Qin

n)(F) =
mi1∑
j1=1

· · ·

min∑
jn=1

F(xi1
j1
, . . . , xin

jn
) · (wi1

j1
× · · · × win

jn
)

where i = (i1, . . . , in) is a multi-index. The problem with this method is that it requires
mi1 × · · · × min function evaluations to compute the integral, which can grow quite large for
even a moderate number of dimensions. Instead, we can utilize a sparse grid – developed

180 A Method of Manufactured Solutions for PDEs with Stochastic Inputs

first by Smolyak [9] – to greatly reduce the number of function evaluations. The sparse grid
construction is given by the formula

A(q, n)(F) =
∑

q−n+1≤|i|≤q

(−1)q−|i| ·

(
d − 1
q − |i|

)
· (Qi1

1 ⊗ · · · ⊗ Qin
n)(F)

where q is a parameter that controls the accuracy. This formula takes a linear combination
of intelligently chosen tensor product grids to maximize a certain metric for accuracy. These
tensor grids overlap at many points, thus reducing the total number of points required to
evaluate the rule.

If the n-dimensional rule is built from Qi’s that are nested, i.e. the set of points used to
evaluated Qi is a subset of the points used to evaluate Qi+1, then the sequence of n-dimensional
rules are also nested. For example, this happens when using one-dimensional Clenshaw-
Curtis and Gauss-Patterson rules. In the end, each of these n-dimensional formulas can be
written as a linear combination of function evaluations and weights.

To compute the moments of the solution to the model problem, we employ the quadrature
rules.

E[u](x) =
∫
Ω

u(x, ξ)Wξ(ξ) dξ

≈

N∑
i=1

u(x, ξi)Wξ(ξi)wi

≡ µu

Var[u](x) =
∫
Ω

(u(x, ξ) − E[u(x, ξ)])2Wξ(ξ) dξ

≈

∫
Ω

(u(x, ξ) − µu)2Wξ(ξ) dξ

≈

N∑
i=1

(u(x, ξi) − µu)2Wξ(ξi)wi

Each u(x, ξi) is a solution to a deterministic problem

∇ · (α(x, ξi)∇ui(x, ξi)) = f x ∈ D.

In practical terms, we run N deterministic solves of an existing code and post-process the
results to compute the moments.

Stochastic collocation [5] combines the non-intrusive features of Monte Carlo with the
spectral convergence rate of stochastic Galerkin. Also, if the length of ξ is sufficiently small,
the stochastic collocation typically requires much fewer deterministic solves than Monte
Carlo to achieve some desired accuracy. However, for high dimensional integrals, i.e. the
length of ξ greater than 10 or so, the number of points, and therefore deterministic solves,
can still get relatively large depending on the computational budget.

3. Method of Manufactured Solutions. The Method of Manufactured Solutions
(MMS) is a procedure used for verifying the order-of-accuracy of a computer code which
solves partial differential equations [8]. By successfully verifying the order-of-accuracy it is
claimed that the code is free of all order-impacting coding mistakes. The method has also
proven valuable for identifying algorithmic weaknesses and deficiencies. The method is

P. Constantine and P.M. Knupp 181

particularly valuable in cases where an exact analytic solution cannot be derived. Systematic
mesh refinement is a key element of order-verification.

The MMS procedure consists of the following steps
(1) Determine the governing set of equations solved by the code, and the formal order-

of-accuracy of the solution method, if known.
(2) Construct an exact solution to the equations,
(3) Run the code using input that is expected to generate the corresponding correct nu-

merical solution,
(4) Calculate the global discretization error,
(5) Refine the grid and repeat steps 3 and 4 until the numerical solution appears to

converge,
(6) Calculate the observed order-of-accuracy from the set of numerical solutions, and

compare it to the formal or expected order-of-accuracy.
If the formal and observed order-of-accuracy agree (to within some tolerance), then the code
is said to have ’passed’ the test constituting the MMS procedure.

To construct the manufactured solution, a function ũ is selected and substituted into the
PDE. The result of this substitution is known as the ’source term.’ The source term is then
input to the code (or internally coded) so that the code can reproduce the manufactured solu-
tion. As a simple example of constructing a manufactured solution, suppose one wanted to
verify the order-of-accuracy of a code solving the 1D non-linear equation

uxx + cos(πu) = 0

on the interval [−1, 1] with boundary conditions

u(−1) = u0

(ku)x(1) = h(x)

Since the equations have no obvious analytic solution, we manufacture one by choosing ũ =
sin(πx) and k(x) =

√
1 + x. Then, ũ satisfies

uxx + cos(πu) = −π2 sin(πx) + cos(π sin(πx))

The right-hand-side is thus the input source term needed to balance the interior equation.
Similarly, the input u0 = ũ(−1) = 0 and the input

h(x) = π
√

1 + x cos(πx) +
sin(πx)

2
√

1 + x

With these inputs to the code, the code is run with a set of successively refined meshes and
the discretization error computed. Details of the MMS procedure are given in [3].

4. Stochastic MMS. The basic idea behind stochastic MMS is the same as in the deter-
ministic case. This method can verify the codes used to compute the moments for each of the
techniques mentioned above – both intrusive and non-intrusive. In the following section, we
describe the method in general terms and then give three specific examples.

4.1. General Case. Consider the general differential equation with stochastic inputs

L(x, t, ξ; u) = 0, x ∈ D (4.1)
u|∂D = g(x, t, ξ) (4.2)

u(x, 0, ξ) = u0 (4.3)

182 A Method of Manufactured Solutions for PDEs with Stochastic Inputs

where the dependence on ξ implies that the operator may involve some finite number of
parameterizing random variables. Here u = u(x, t, ξ) is a function that satisfies the equations
above, and f (x, t, ξ) is the source term. The operator L can be linear or non-linear, and can
depend on space and time.

Suppose we have a code that computes the moments of the solution to 4.1 that we want to
use to perform an order verification study. The only requirement on the code is that it is able to
accept an arbitrary forcing term – or right hand side. For the intrusive methods of computing
moments, this means the right hand side (and its projection onto each Galerkin basis) must
be specified in something like a user-defined function. For the non-intrusive methods, the
existing deterministic code must accept user-defined forcing terms.

Choose a function ū(x, t, ξ) that satisfies the boundary and initial conditions. (Note that
this requirement is not necessary in the deterministic case.) This ū should be an explicit
function of the components of ξ. Next compute the moments of ū, E[ū] and Var[ū] using the
definitions of expectation and variance. This can often be done analytically; if necessary, it
can be computed with numerical integration. With these “exact” moments, we can check the
convergence of the given code.

To check the convergence rate of the code, first compute

f̄ (x, t, ξ) = L(x, t, ξ; ū)

offline either by hand or with the aid or a computer algebra system. Next create a user-
defined function in the code that represents f̄ . For an intrusive stochastic Galerkin code,
this may involve computing the inner product of f̄ against the basis polynomials. For non-
intrusive codes, it will involve evaluating f̄ at each sample point or collocation point and
running separate solves. Thus the user-defined right hand side will need to take into account
the varying values of the random input parameters.

For an intrusive stochastic Galerkin code, choose an order of the truncated polynomial
representation of the solution, and use the code to compute the moments E[u] and Var[u] with
f̄ as the forcing term. By increasing the order of the truncated expansion and comparing E[u]
and Var[u] with the exact E[ū] and Var[ū], respectively, we can verify the convergence rate of
the code.

For a non-intrusive code, choose a level of accuracy of the quadrature rule – which sets
the number of points in the rule – and, again, use the code to compute the moments E[u] and
Var[u] with f̄ as the forcing term. Verify the convergence rate of the code by increasing the
level of the quadrature rule and comparing the computed moments with the exact E[ū] and
Var[ū].

The metric we use to verify the rate of convergence is the infinity norm of the difference
between the compute and exact moments, e.g.

‖VarN[u] − Var[ū]‖∞,

where the subscript N denotes the appropriate dependence on discretization in the random
space. In the next sections, we give three concrete examples of using this method to verify
codes.

4.2. Example 1. Consider the following 1-D elliptic equation.

−ξuxx = f x ∈ [0, 2π]

where ξ is a uniformly distributed random variable over the interval [a, b] with 0 < a < b,
and the boundary conditions are u(0, ξ) = u(2π, ξ) = 0.

P. Constantine and P.M. Knupp 183

We can choose ū = ξ sin(x) since it is an explicit function of ξ and

ξ sin(0) = ξ sin(2π) = 0.

The mean and variance of ū are given by

E[ū] = E[ξ sin(x)]
= E[ξ] sin(x)

=
b + a

2
sin(x)

Var[ū] = E[ū2] − (E[ū])2

= E[ξ2] sin2(x) −
(

b + a
2

sin(x)
)2

=

b2 + ab + a2

3
−

(
b + a

2

)2 sin2(x)

=
(b − a)2

12
sin2(x)

Next compute

f̄ = ξūxx

= −ξ2 sin(x)

Plug f̄ into the given code for computing moments.
For an intrusive stochastic Galerkin code, choose the truncation level P = Pinit of the

series

u ≈
P∑

i=0

ui(x)Ψi(ξ)

where {Ψi} are the Legendre polynomials which are orthogonal with respect to the uniform
measure. Run the given code varying P from Pinit to Pfinal to compute values for E[u] and
Var[u]. Compare these computed values to E[ū] and Var[ū] and observe the convergence as
P increases. Using a short Matlab implementation of a stochastic Galerkin approach to this
problem, we get the results in Figure 4.2. We can see the error drop to machine precision
after one term in the PCE. This makes sense when we compare the manufactured solution to
the PCE representation. Observe that

ξ sin(x) =
N∑

i=0

ui(x)Ψi(ξ)

implies that only the first two coefficients in the expansion are non-zero. (Note that there
is a change in variables from ξ to a uniform[-1,1] random variable to recover the Legendre
polynomials.)

4.3. Example 2. In this example we incorporate another parameterizing random vari-
able into the equation. This problem can easily be extended to an arbitrary number of pa-
rameterizing random variables, but we stick to two for the sake of demonstration. Consider

184 A Method of Manufactured Solutions for PDEs with Stochastic Inputs

F. 4.1. Convergence of computing mean and variance with stochastic Galerkin on a 1-D elliptic problem with
a random coefficient.

the model elliptic problem with one spatial dimension, x ∈ [0, 2π], and the spatially varying
coefficient given by

α(x, ξ1, ξ2) = ξ1 cos(ω1x) + ξ2 cos(ω2x) + 2

where ξ1 and ξ2 are independent and distributed uniformly over the interval [−1, 1]. The wave
numbers are chosen as ω1 = 1 and ω2 = 2.

For this problem, we choose ū = ξ1ξ2 sin(x) and compute the exact moments as

E[ū] = E[ξ1ξ2 sin(x)]
= E[ξ1]E[ξ2] sin(x) by independence
= 0

Var[ū] = E[ξ2
1ξ

2
2 sin2(x)]

= E[ξ2
1]E[ξ2

2] sin2(x) by independence

=
1
9

sin2(x)

To compute the manufactured right hand side, we derive

f̄ = −∇ · (α∇ū)
= −((ξ1 cos(ω1x) + ξ2 cos(ω2x) + 2)(ξ1ξ2 sin(x))x)x

= (ξ1ω1 sin(ω1x) + ξ2ω2 sin(ω2x))ξ1ξ2 cos(x) + (ξ1 cos(ω1x) + ξ2 cos(ω2x) + 2)ξ1ξ2 sin(x)

For this example, we verify the
√

M convergence rate of a Monte Carlo method for computing
the moments. We ran this study with Sandia’s DAKOTA Toolkit [1] and a short code for solv-
ing a deterministic problem where ξ1 and ξ2 are input parameters. The plots of convergence
are given in Figure 4.3.

4.4. Example 3. For the final example, we consider a time-dependent Burgers’ equation
with one spatial dimension. We can state the problem as: compute the moments of u(x, t, ξ)
where u satisfies

ut +

(
u2

2

)
x
= 0

P. Constantine and P.M. Knupp 185

F. 4.2. Convergence of computing mean and std. dev. with Monte Carlo on an elliptic problem with random
coefficients.

for x ∈ [0, 1], t ∈ [0,T], and almost every value of ξ. Instead of specifying the boundary and
initial conditions, we will derive them from the manufactured solution. We choose

ū = sin(2πx + t) + σξ10

where ξ is uniformly distributed over [−1, 1] and σ is a parameter that controls the total
variation. From this we derive the initial and boundary conditions of the problem:

u(x, 0, ξ) = sin(2πx) + σξ10 u(0, t, ξ) = u(1, t, ξ) = sin(t) + σξ10

Note that the manufactured solution is a tenth degree polynomial in terms of ξ. Let us now
compute the exact moments. It is useful to recall the following formula for ξ:

E[ξn] =
1 − (−1)n+1

2(n + 1)
.

Then we can compute

E[ū] = E[sin(2πx + t) + σξ10]
= sin(2πx + t) + σE[ξ10]

= sin(2πx + t) +
σ

11

E[ū2] = E[(sin(2πx + t) + σξ10)2]
= E[sin2(2πx + t) + 2σξ10 sin(2πx + t) + σ2ξ10]

= sin2(2πx + t) +
2σ
11

sin(2πx + t) +
σ2

21
so that

Var[ū] = E[ū2] − (E[ū])2 =
100σ2

2541
.

Using a 1-D Gaussian quadrature rule as above to approximate the moments, we obtain the
plots in Figure 4.4 for convergence to the exact moments. This convergence is admittedly
not as clean as the first two examples. In this case the error is dominated by the spatial
discretization. We used a first order method to solve the deterministic Burgers’ equation.
In future work we will discuss the relationship between the error associated with the spatial
discretization and the discretization in the random space.

186 A Method of Manufactured Solutions for PDEs with Stochastic Inputs

F. 4.3. Convergence of moments with stochastic collocation for Burgers’ equation

5. Summary. With the development of uncertainty quantification algorithms for com-
puting moments of solutions of PDEs with random inputs, a need has arisen for verification
of the implementations of these algorithms in the sense of both correctness and rate of con-
vergence. In this paper, we proposed a stochastic method of manufactured solutions to satisfy
the need. Simply apply the random operator of the PDE to a manufactured function of the
appropriate variables to derive a right hand side. This results in a related problem with an an-
alytical (manufactured) solution with which to verify the correctness and rate of convergence
of the implementation.

At the very least, this work provides a method to create benchmark problems that test the
robustness of new UQ methods and provides a means to compare existing methods.

REFERENCES

[1] M. S. E, A. A. G, B. G.  BW, S. F. W, W. E. H, M. P. A,
DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis, Technical Report SAND2001-3796, Sandia, (2002).

[2] R. G  P. S, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York,
1991.

[3] P. K K. S, Verification of Computer Codes in Computational Science and Engineering, Chapman
and Hall/CRC, 2003.

[4] M. L, Probability Theory, Van Nostrand Company, Inc., New York, N. Y., 1955.
[5] F. N, R. T,  C. G. W, A sparse grid stochastic collocation method for elliptic partial

differential equations with random input data, Technical Report #85, MOX, Dipartimento di Matematica,
(2006).

[6] E. N  K. R, High dimensional integration of smooth functions over cubes, Numer. Math., 75
(1996), pp. 79–97.

[7] J. A. R, Mathematical Statistics and Data Analysis, Duxbury Press, 2nd ed., 1995.
[8] P. R, Code verification by the method of manufactured solutions, Journal of Fluids Engineering, Trans-

actions of the ASME, 124 (2002), pp. 4–10.
[9] S. S, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl.

Akad. Nauk SSSR 4, (1963), pp. 240–243.
[10] N. W, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897–936.
[11] D. X  G. K, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM

Journal on Scientific Computing, 24 (2002), pp. 619–644.

M.L. Parks and S.S. Collis 187

Architecture and Systems Software

All applications software lies on top of systems software, which in turn manages and
controls the underlying computer hardware. As such, the development of improved sys-
tems software and the development of improved computer architectures enables improved
performance for all applications. The articles in this section discuss systems software and
architectural improvements to enhance performance for real-world scientific applications.

Wheeler and Murphy introduce the qthread API and a Unix implementation. This ab-
straction provides basic lightweight thread control and synchronization primitives portable
to existing highly parallel architectures, enabling lighter-weight threading on common op-
erating systems. Rupnow and Underwood present a RFU architecture to efficiently handle
a large number of input and output operands, and demonstrate speedup on many computa-
tional kernels for real scientific applications. La Fratta et al. explore an alternative execution
model in which groups of dependent floating point operations are encoded into a single in-
struction, called a floating point instruction aggregate (FPIA). They present the requirements
of an architecture to support such instructions and estimate potential performance improve-
ments offered by such an architecture. Lastly, Curry et al. explore a GPU-based system for
generating redundant information for error recovery in a RAID system that can correct for
the simultaneous loss of two or more disks within a single array.

M.L. Parks
S.S. Collis

December 6, 2007

188 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2007 189

LIGHTWEIGHT THREADING FOR ARCHITECTURAL DESIGN RESEARCH

KYLE B. WHEELER∗ AND RICHARD C. MURPHY†

Abstract. Increased parallelism is a powerful method for increasing computational power, and one way that such
parallelism is expressed is as threads. Large scale threading benefits significantly from lower per-thread overhead,
and lightweight threading with hardware support is a developing area of research. Each architecture with support for
lightweight threading provides a different interface to the programmer, making comparisons between them difficult.
As such there is a need for an abstraction that provides basic lightweight thread control and synchronization primi-
tives in a way that is portable to existing highly parallel architectures as well as to future and potential architectures
to assist in exploring both the architectural needs of large scale threading and the extent to which threading can be
expressed in existing programming languages. This paper introduces the qthread API and its Unix implementation.

1. Introduction. Modern supercomputers have largely taken the route of parallel com-
putation to achieve increased computational power. Use of parallelism to increase execution
speed has largely operated in two entirely different worlds: the world of the very large, where
programmers explicitly create parallel threads of execution, and the world of the very small,
where processors attempt to extract parallelism from streams of instructions. Parallelism has
been exploited at low levels of the architecture, including hardware-based techniques such as
Simultaneous Multi-Threading and out-of-order execution, both of which identify work that
is sufficiently unrelated to be performed at the same time. However, programmers have only
been given interfaces such as MPI [5], Pthreads [8], and more recently OpenMP [4] to ex-
press the parallelism of their algorithms. This is a significant semantic disconnect that limits
or prevents full exploitation of the available parallelism.

As the amount of available lower-level hardware parallelism increases, it becomes more
and more necessary to allow the programmer to express parallel execution simply, and without
the overhead usually associated with standard parallel programming models.

Support for lightweight threading in hardware is a rapidly developing field, and current
portable programming interfaces do not expose these newly available capabilities to the pro-
grammer for use on architectures that have them.

The qthread API is designed to change that. Designed to be sufficiently similar to ex-
isting threading libraries so as to be simple to use, the qthread API does not have many fea-
tures that heavyweight threading uses its large amount of thread state to provide. Qthreads,
by contrast, have very small amounts of thread-specific state, and provide initialization-free
synchronization methods based around the Full/Empty Bit (FEB) synchronization technique
[10] that interact directly with their simple scheduling mechanism. While being lightweight,
the qthread API is designed to be simple to port to alternative and experimental architec-
tures, such as Cray’s Multi-Threaded Architecture (MTA) [1] and the developing Processor-
In-Memory (PIM) [9, 3, 6] designs.

2. Design Goals. The qthread API was designed to maximize portability to experi-
mental architectures supporting lightweight threads and unusual synchronization primitives
while providing a stable interface to the programmer for using these lightweight threads.
Lightweight threads, and thus qthreads, have inherent restrictions on their stack size, and pro-
vide an easily emulated universal locking scheme based on the Full/Empty Bit (FEB) concept
[10]. For control of resources, qthreads can use a definition of a thread, called a “future”, that
is only created when there are resources available for it.

In addition to portability, performance is important to the design of the API. The API’s
goal is to add as little overhead as possible to experimental architectural threading primitives

∗University of Notre Dame, kwheeler@cse.nd.edu
†Sandia National Laboratories, rcmurphy@sandia.gov

190 Lightweight Threading

while maintaining its generic nature. For example, to reduce overhead, qthreads are consid-
ered mostly anonymous, and cannot be affected directly by other threads—there is no way
to cancel a currently running thread, and threads are not expected to respond to signals. The
sole way to communicate reliably between threads is to use shared data structures protected
by the locking functions provided by the API. Waiting for threads to finish, for example, is
best done by waiting for them to return a value, which allows all qthreads to release their
resources when they exit even if no one is waiting for them.

The generic design of the API is the primary contribution of this work, though the Unix
implementation of the API is important to demonstrate the workability and functionality of
the system. The development of the implementation informed the development of the API
design. For example, since lightweight threads have limited stack space, a function was
needed in the API that would allow the programmer to monitor this limited resource, for
debugging and runtime decision-making. Both the API and the implementation, with the
exception of the futurelib, were designed and implemented entirely by the authors of this
paper. The futurelib component was designed and implemented by Megan Vance.

2.1. Basic Design. The qthread API consists of four components: the core lightweight
thread interaction command set, a set of commands for resource-limit-aware threads (“fu-
tures”), a C++ interface for basic threaded loops, and a C-language interface for several va-
rieties of basic threaded loops. The loop packages are built on top of the core thread control
and resource-limit-aware threading components.

2.2. Basic Thread Control. The qthread library implements a nearly-anonymous
threading interface. Threads, once created, cannot be controlled by other threads. How-
ever, they can provide return values which are protected by a synchronization method, such
as an FEB, enabling a thread to wait for another thread to complete. When threads are waiting
for a synchronization event—i.e. “blocked”—they are removed from the scheduling queues
and are only available to be scheduled when they are unblocked.

Threads must assume that they are running in a cooperatively scheduled environment
(although they may not be), and thus spin-locking rather than using one of the provided
synchronization primitives is discouraged.

Lightweight threads are scheduled in the bailiwick of one of several “shepherds.” The
number of shepherds is defined when the library is initialized. A shepherd is a grouping con-
struct, or a thread mobility domain. Qthreads are assigned a shepherd when they are created
and cannot move between shepherds. In the Unix version of the qthread library, a shepherd is
a pthread responsible for organizing and executing the qthreads. In other qthread implemen-
tations, shepherds may be nodes in the system, memory regions, or protection domains.

The outline of the qthread thread-manipulation API is given below. For a complete spec-
ification, see the qthread library’s documentation:

qthread init (n) Initialize the threading library, able to use n shepherds.
qthread fork(func,arg, ret) Create a thread to run func(self ,arg) and make it available for ex-

ecution. Its return value will be stored in ∗ret. The thread may be created on any
shepherd.

qthread fork to (func,arg, ret ,shep) Create a thread and make it available for execution on the
shepherd shep.

qthread self () returns (self). Obtain a reference to the executing thread. This is primarily
for use in avoiding extra lookups when doing locking; use of this reference by other
threads is undefined.

qthread shep() returns (shepherd). Discover which shepherd this thread has been assigned
to.

K.B. Wheeler and R.C. Murphy 191

qthread retloc () returns (addr). Discover where the return value for this function will be
stored.

qthread stackleft () returns (bytes). Discover approximately how many bytes are available in
the thread’s stack.

qthread finalize () Destroys all threads, releases all related memory.
The qthread API also provides functions to manipulate locking structures. These mimic

both a generic mutex and full/empty bits, though the implementation of each may not have
direct hardware support. The two categories of synchronization may be implemented using
the same underlying mechanism, or may not, so using the two techniques on the same ad-
dresses at the same time results in undefined behavior. When these locking primitives do
not have direct hardware support, they must be emulated using what locking primitives are
available. The current Unix implementation implements them using pthread mutexes, and a
32-way striped mutex-protected hash table.

The outline of the qthread locking API is given below. For a complete specification, see
the qthread library’s documentation:

qthread lock(self ,addr) Obtain a lock on the address addr.
qthread unlock(self ,addr) Release the lock on the address addr.
qthread empty(self,addr) Set the full/empty state of address addr to be empty.
qthread fill (self ,addr) Set the full/empty state of address addr to be full.

qthread readFE(self,dest,src) Wait for src to become full, then copy the data in ∗src into ∗dest
and set src to be empty. This is atomic.

qthread readFF(self,dest,src) Wait for src to become full and then copy the data in ∗src into
∗dest. This is atomic.

qthread writeEF(self,dest,src) Wait for dest to become empty and then copy the data in ∗src
into ∗dest and set dest to be full. This is atomic.

qthread writeF(self ,dest,src) Copy the data in ∗src into ∗dest and set dest to be full. This is
atomic.

qthread feb status(addr) returns (status). Discover the current full/empty state of addr.
qthread incr(addr,incr) returns (value). Discover the current value stored at addr and add incr

to it. May or may not use qthread lock() and qthread unlock(), depending on compile-
time options and hardware/compiler support. This is atomic.

2.3. Futures. The qthread API has no built-in limitations on the number of threads
spawned other than the amount of memory necessary for the threads’ contexts. Memory
allocation failures are the only limit. When confronted with the memory limits, applications
have few options other than to wait and try again. To make memory management easier, a
variant of qthread creation was created to allow the programmer to set arbitrary limits on the
number of threads that may exist at the same time. These resource-limit-aware threads are
called “futures”. Attempting to create a future when the maximum number of futures already
exist causes the creating thread to block until the future can be successfully created. The
future-related API is a simple extension to the qthread thread-manipulation API:

future init (limit) Defines the maximum number of futures per shepherd to be limit .
future fork (func,arg, ret) Essentially identical to qthread fork() , but creates a future and as

such will block until the future has been created.
future yield (self) Causes a future to become merely a qthread temporarily. Useful for avoid-

ing deadlock in some situations.
future acquire(self) Causes a qthread to become a future if it had previously yielded; may

block if there are too many futures already.
The qthread API also includes some convenience functions, built on top of the core

threading, locking, and futures functionality. These convenience functions generally provide

192 Lightweight Threading

threaded loops and the ability to perform simple actions over large sets of data. These conve-
nience functions are separated into three categories: the futurelib (written by Megan Vance),
the Qloops, and Qutils.

2.3.1. Futurelib. The futurelib is a template-based C++ interface to the qthread and
futures primitives. The most important and basic functions in the futurelib are mt loop(), for
parallel iterations that do not return values, and mt loop returns(), for parallel iterations that
do. The distinction between the two is not always obvious, and can often be treated as merely
a programmer convenience. Both functions are implementations of a parallel for-loop. The
mt loop() function is used in a format like this:

mt loop < . . . a r g t y p e l i s t . . . , looptype>
(f unc t i on , . . . a r g l i s t . . . , s t a r t v a l , s topva l , s tepva l) ;

This construction is relatively straightforward. The function argument specifies a function
that will be used for each iteration of the loop. The iterations are defined as each having a
number starting at startval , ending at stopval, incremented by stepval (which is optional, and
defaults to 1). The looptype option specifies the kind of parallelism, and has four possible
values:

mt loop traits :: Par All iterations are created at once as qthreads and the mt loop() function
will not return until all iterations are finished.

mt loop traits :: ParNoJoin Similar to Par, but does not wait for iterations to finish before
returning flow control to the parent thread.

mt loop traits :: Future Similar to Par, but uses futures instead of qthreads.
mt loop traits :: FutureNoJoin Similar to ParNoJoin, but uses futures instead of qthreads.

The argtypelist in the mt loop() construction is a list of conceptual types defining how the
arguments to the iteration function will be handled. Each conceptual type corresponds to a
single argument to the iteration function. Valid conceptual types are:

Iterator This corresponds to the integer value associated with each iteration, being a number
between startval and stopval.

ArrayPtr This corresponds to an argument that is a pointer to an array. Each iteration function
instance will be passed the value of array[iteration].

Ref The corresponding argument will be passed to the iteration function as a reference.
Val The corresponding argument will be passed to the iteration function as a constant value

(i.e. the same value will be passed to all iterations).
As an example, here is a simple loop:

for (i n t i = 0 ; i < 10; i ++) {
ar ray [i] = i ;

}

This simple loop could be threaded with the futurelib like so:

void assign (i n t &ar ray va lue , const i n t i) {
ar ray va lue = i ;

}

mt loop<ArrayPtr , I t e r a t o r , m t l o o p t r a i t s : : Par>
(assign , array , 0 , 0 , 10) ;

Alternatively, the following code would achieve the same goal:

void assign (const i n t i , const i n t ∗ a) {
a [i] = i ;

}

K.B. Wheeler and R.C. Murphy 193

mt loop< I t e r a t o r , Val , m t l o o p t r a i t s : : Par>
(assign , 0 , array , 0 , 10) ;

The mt loop returns() variant adds the specification of what to do with the return values.
The pattern is like this:

mt loop re tu rns < r e tu rnva l t ype , . . . a r g t y p e l i s t . . . , looptype>
(r e t v a l , f unc t i on , . . . a r g l i s t . . . , s t a r t v a l , s topva l , s tepva l) ;

The only difference is in the returnvaltype and the retval . The returnvaltype can be either
an ArrayPtr or a Collect. If it is an ArrayPtr, each return value will be stored in a separate entry
in the retval array, corresponding to the iteration. The parallel loop will behave similar to the
following loop:

for (i n t i = s t a r t v a l ; i < s topva l ; i += s tepva l) {
r e t v a l [i] = f u n c t i o n (. . . a r g l i s t . . .) ;

}

The Collect type is more interesting, and can be one of the following:
Collect<mt loop traits :: Add> This sums all of the return values in parallel and stores the

value in retval .
Collect<mt loop traits :: Sub> This subtracts all of the return values in parallel and stores the

value in retval . Note that the answer may be nondeterministic.
Collect<mt loop traits :: Mult> This multiplies all of the return values in parallel and stores the

value in retval .
Collect<mt loop traits :: Div> This divides all of the return values in parallel and stores the

value in retval . Note that the answer may be nondeterministic.
The accumulation functions occur as data is made available by iteration functions return-

ing. Thus, adding or multiplying multiple integers is predictable, while doing the same with
floating point numbers exposes the user to potential rounding problems due to the operation
ordering. Use of Collect<mt loop traits :: Add> is roughly equivalent to the following loop:

for (i n t i = s t a r t v a l ; i < s topva l ; i += s tepva l) {
r e t v a l += f u n c t i o n (. . . a r g l i s t . . .) ;

}

2.3.2. Qloop, and Qutil. The qloop component provides futurelib-like functionality
with a strictly C-language interface. Because of the inherent limitations of the C language,
this interface is slightly more cumbersome than the futurelib’s C++ interface. The qloop
component provides two alternative parallel loop behaviors: one that, like futurelib, spawns a
separate qthread or future for each iteration, and the other which spawns one qthread for each
shepherd and gives each thread a segment of the iteration-space to compute.

An outline of the qloop parallel for-loop interface is given below. For the complete
specification, see the qthread documentation:

qt loop(start ,stop, stride ,func,argptr) Spawns func as a qthread with the argument argptr for
every iteration between start and stop with a stride of stride .

qt loop future (start ,stop, stride ,func,argptr) Similar to qt loop () , but uses futures instead of
qthreads.

qt loop balance(start ,stop,func,argptr) Spawns func as a qthread for each shepherd. Each
instance of func is assigned a specific range of the iteration space between start and
stop over which it can operate.

194 Lightweight Threading

qt loop balance future(start ,stop,func,argptr) Similar to qt loop balance(), but uses futures in-
stead of qthreads.

qt loopaccum balance(start,stop,size,out,func,arg,accfunc) Similar to qt loop balance(), how-
ever each func may have a return value size bytes long that will be stored in out. The
combination of the return values is controlled by the accumulator function accfunc.

As an example, qt loop () behaves similarly to the following loop:

for (i n t i = s t a r t ; i < stop ; i += s t r i d e) {
func (a r g p t r) ;

}

The qt loop balance() function behaves like the following loop. For simplicity, this exam-
ple loop assumes that the number of iterations is evenly divisible by the number of shepherds,
though qt loop balance() does not. Note that it has access to the number of shepherds, which
is stored internally in the qthreads library:

i n t s t r i d e = (stop − s t a r t) / num shepherds ;
for (i n t i = s t a r t ; i < stop ; i += s t r i d e) {

func (i , i + s t r i d e , a r g p t r) ;
}

Additionally, qloop provides several simple utility functions that use the balanced loop
interface to perform simple tasks, such as compute the sum of every element in an array.
The qutil component also provides utility functions for performing these simple tasks, but
implements them with a lagging-loop structure. Table 2.1 compares the equivalent functions
for operating on arrays of doubles. Similar functions are available for integers and unsigned
integers.

Qloop Qutil
qt double min() qutil double min ()
qt double max() qutil double max()
qt double prod() qutil double prod ()
qt double sum() qutil double sum()

T 2.1
Qloop compared to Qutil

Assuming that each shepherd maps to a single processor’s ability to execute, the balanced
loop design provided by qt loop balance() allows the computational power of a parallel system
to be maximized with a minimum amount of overhead, but presumes that the iterations do not
interact or depend on each other in any way, and does not compensate for additional threads
that may also be executing.

The lagging-loop design used in Qutil functions spawns threads for fixed-size segments
of the iteration space. The number of threads active at any given time is thus either limited
only by the problem size, or limited by the imposed limit on the number of active futures. This
technique cooperates with unrelated executing threads well, and handles interaction between
threads better because there are typically more than one thread assigned to each shepherd,
so when one blocks, other threads can execute. However, this behavior incurs more thread-
management overhead, which varies by implementation. This loop design also requires a
well-chosen segment size, to minimize thread overhead without reducing the parallelism to
a point where it cannot cooperate with other unrelated threads sufficiently. In that sense, a
balanced loop design is a special case of the lagging-loop design, where the library chooses
the segment size to match the available shepherd-level parallelism.

K.B. Wheeler and R.C. Murphy 195

3. Application Development. Development of software that realistically takes advan-
tage of lightweight threading is important to research, but difficult to achieve, as there are
few organizations willing to devote the time to develop large scale threaded applications for
architectures that may never exist.

3.1. Cray’s Multi-Threaded Architecture. Cray’s MTA [1] is of particular interest to
lightweight threading researchers, as it provides lightweight threads, fast locks, FEB support,
and a toolchain to take advantage of them. The architecture even has some large-scale soft-
ware available for it. In particular, the Multi-Threaded Graph Library (MTGL) [2] provides
a good example of high-performance code written for an architecture that provides these ca-
pabilities.

The platform-specific features of the MTA are primarily accessed through the use of
C-language pragmas that instruct the custom MTA compiler how to parallelize the code.
Because MTA applications are so dependent on the compiler, porting such code to other
architectures is rather difficult.

Because the qthread library provides similar features, the MTGL can be ported relatively
easily to use the qthread API rather than the native MTA API, and once that is done, can
be run on other architectures relatively easily, including any experimental architectures for
which a qthread implementation has been developed.

3.2. High Performance Computing Conjugate Gradient Benchmark. The qthread
API makes parallelizing ordinary serial code extremely simple. As a demonstration of its
capabilities, the HPCCG benchmark written by Mike Heroux for Sandia National Laborato-
ries was parallelized with the qloop interface of the qthread library. The HPCCG program
is a simple conjugate gradient benchmarking code for a 3-D chimney domain, largely based
on code in the Trilinos[7] solver package. The code relies primarily upon tight loops where
every iteration of the loop is essentially independent of every other iteration. This type of
code is ripe for parallelization. With simple modifications to the code structure, the serial
execution of HPCCG was transformed into multithreaded code. As illustrated in Figure 3.1,
the parallelization is able to scale well. The performance numbers in this graph were obtained
by running the code on a 48-node SGI Altix SMP.

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 48

Serial Computation

Serial Execution

qthread Computation

qthread execution

strong qthread scaling

F. 3.1. HPCCG Benchmark on a 48-node SGI Altix SMP

196 Lightweight Threading

4. Conclusions. Large scale computation of the sort performed by common compu-
tational libraries can benefit significantly from low-cost threading, as demonstrated here.
Lightweight threading with hardware support is a developing area of research that the
qthreads library assists in exploring while simultaneously providing a solid platform for
lighter-weight threading on common operating systems. It provides basic lightweight thread
control and synchronization primitives in a way that is portable to existing highly parallel
architectures as well as to future and potential architectures. Because the API can be im-
plemented and can provide MPI-like performance on existing platforms without a custom
compiler, it allows study and modeling of the behavior of large scale parallel scientific appli-
cations for the purposes of developing and refining such parallel architectures.

REFERENCES

[1] Cray MTA-2 system - HPC technology initiatives, November 2006.
[2] J. W. B, B. A. H, S. K,  P. K, Software and algorithms for graph queries

on multithreaded architectures, in Proceedings of the International Parallel & Distributed Processing
Symposium, IEEE, 2007.

[3] J. B. B, S. T, S. K. K,  P. M. K, A low cost, multithreaded processing-in-
memory system, in WMPI ’04: Proceedings of the 3rd workshop on Memory performance issues, New
York, NY, USA, 2004, ACM Press, pp. 16–22.

[4] L. D  R. M, OpenMP: An industry-standard API for shared-memory programming, IEEE Com-
putational Science & Engineering, 5 (1998), pp. 46–55.

[5] M. P. I. F, MPI: A message-passing interface standard, Tech. Report UT-CS-94-230, 1994.
[6] M. H, P. K, J. K, P. D, J. C, J. D, J. LC, J. G, J. B, A. S-

, W. A, V. F, J. S,  J. P, Mapping irregular applications to DIVA, a PIM-based
data-intensive architecture, in Supercomputing ’99: Proceedings of the 1999 ACM/IEEE conference on
Supercomputing (CDROM), New York, NY, USA, 1999, ACM Press, p. 57.

[7] M. H, R. B, V. H, J. H, T. K, R. L, K. L, R. P, E. P,
A. S,  ., An overview of Trilinos, Tech. Report SAND2003-2927, Sandia National Laborato-
ries, 2003.

[8] I  E  E E, IEEE Std 1003.1-1990: Portable Operating Systems
Interface (POSIX.1), 1990.

[9] P. K, S. B, J. B, D. C,  E. S, Pursuing a petaflop: Point designs for 100 TF com-
puters using PIM technologies, in Proceedings of the 1996 Frontiers of Massively Parallel Computation
Symposium, 1996.

[10] C. P. K, L. R,  M. S, Efficient synchronization of multiprocessors with shared memory,
in PODC ’86: Proceedings fo the fifth annual ACM symposium on Prinicples of distributed computing,
New York, NY, USA, 1986, ACM Press, pp. 218–228.

CSRI Summer Proceedings 2007 197

RECONFIGURABLE FUNCTIONAL UNIT DESIGN FOR COMPLEX
SCIENTIFIC DATAFLOW GRAPHS

KYLE RUPNOW∗ AND KEITH D. UNDERWOOD†

Abstract. Reconfigurable Functional Units (RFUs) tightly coupled with the main processor have significantly
less communication overhead than a coprocessor model, allowing them to efficiently accelerate smaller computation
graphs. However, tightly coupled RFUs are constrained by register file limitations, and the communication model
of conventional functional units makes assumptions that are often invalid for RFUs. One graph execution using
the RFU may require many inputs and each of the many outputs may complete at a different time. Furthermore,
each execution of that same graph may generate a different number of needed outputs depending on the execution
context. Therefore, we present a method that supports individual output bypassing and a variable and potentially
large number of outputs for RFU instructions. To ensure that instructions do not wait to receive an operand that
is already ready, we associate a ready bit with each of the resources in the RFU so that each output can complete
and bypass to consuming instructions separately. We support a variable number of outputs by storing all potential
graph outputs in a shadow register file. A compiler can track values stored in the shadow register file and insert
move instructions to copy the values to the architected register file as needed. Thus, we generate all outputs and only
consume register file bandwidth when an operand will be used. We have achieved an average 0.9% speedup with
individual output bypassing, and 2.7% speedup with individual output bypassing plus a shadow register file.

1. Introduction. Many modern supercomputers are used as capability machines. The
modern generation of capability supercomputers such as the Cray XT3 and BlueGene/L con-
tains tens of thousands of processor cores, and it is not uncommon for the entire supercom-
puter to be devoted to one application for weeks at a time. In scientific computing the trend
towards more processing cores faces significant challenges. It is already difficult for an ap-
plication to efficiently utilize all of the available processing cores [10]. Load imbalance and
communication overhead create particular challenges; parallel application developers expend
significant effort to enable dynamic load balancing across cores in a large system while at-
tempting to minimize the total required amount of communication (two competing goals).
These overheads can limit the effective exploitation of parallelism by negating the benefit
of additional computation threads. Thus, for many systems that already leverage hundreds
of processing nodes, adding more processing cores per node cannot always provide the re-
quired performance improvement. In these cases, increasing individual core performance can
provide an overall performance improvement without increasing communication overhead.
Unfortunately, it has become increasingly difficult to improve single-threaded performance.
Traditional techniques such as better branch prediction, larger instruction and data caches,
larger issue queue and issue width, and more functional units often require corresponding in-
creases in register file bandwidth and many of these structures are already on the processor’s
critical path. Recent research has suggested split cache structures [4], clustered architectures
[17], dependence based scheduling [13], speculative wakeup [20] and macro-op scheduling
[12] to enable effectively larger structures while minimizing the impact to the critical path.

Reconfigurable Functional Units (RFUs) can achieve many of the benefits of these ap-
proaches. A graph of potentially many processor instructions is extracted and compressed
into a small number of RFU opcodes, giving the processor an effectively larger issue queue.
Additionally, because issuing a single RFU opcode can represent the issue of multiple for-
merly separate instructions that may operate in parallel, issue width is effectively increased.
The RFU configuration represents a pre-computed instruction schedule that describes both
issue parallelism and any sequential dependence of graph instructions, similar to dependence
based scheduling. The RFU also has a flexible routing network with localized communication

∗University of Wisconsin-Madison,kjrupnow@wisc.edu
†Intel Corp., kdunder@sandia.gov

198 RFU Design for Complex Scientific Dataflow Graphs

paths similar to those of clustered architectures, so connections between functional resources
within the RFU can be optimized for the instruction graph.

Most prior work involved augmenting relatively simple processor architectures with re-
configurable hardware. The complexity of processors used in scientific computing presents
additional challenges to RFU design for these devices. An instruction graph may require
many inputs and produce many outputs; however, not all inputs may be needed simultane-
ously for the graph to begin useful computation, and not all outputs may be generated at the
same time. Although the RFU could simply wait for all inputs to be available before begin-
ning execution, this could result in worse application performance than a baseline superscalar
processor that uses out-of-order execution to mitigate variable input arrival latencies. This pa-
per presents an RFU architecture augmented with “ready bits” to allow the RFU to compute
as inputs are available. Another issue faced by RFUs is that an application may contain the
same instruction graph in multiple areas of the code, but require different sets of outputs from
the different instances of the graph. A simple solution is to ensure that the RFU commits all
unique register destinations in the graph to architected state. This can result in unnecessary
communication in many cases, slowing overall performance. Therefore, we also present a
new RFU architecture that uses both ready bits and a shadow register file to efficiently handle
variability in quantity and timing of inputs and outputs.

2. Related Work. Many architectures have used reconfigurable hardware to accelerate
applications [9, 22, 23, 1, 8, 18, 5, 6, 19]. Fine-grained reconfigurable logic efficiently accel-
erates bit-level manipulations [8, 18, 23], whereas coarse-grained architectures use common
compute units such as ALUs and multipliers to accelerate word-sized computations [6, 19, 5].
Fine-grained architectures provide greater flexibility than coarse-grained ones, but at the ex-
pense of increased configuration data and thus a longer reconfiguration time.

Communication methods between reconfigurable hardware and a host processor is af-
fected by the coupling between the two. Two of the main coupling methods include a func-
tional unit model and a coprocessor model. Reconfigurable functional units (RFUs), such as
[8, 18, 5] and those examined by Rupnow et al [19] communicate with the processor through
the register file. This can minimize communication overhead for operations with a small
number of operands, and allow the RFU to efficiently accelerate smaller instruction graphs
than possible with a coprocessor model. A reconfigurable coprocessor may receive some
data from the host processor, but also communicates directly with other resources, such as
memory or I/O [9, 22, 23, 1]. Operations mapped to a reconfigurable coprocessor frequently
are very regular computations performed repeatedly over a great deal of regularly-spaced
(strided) data. The coprocessor model allows reconfigurable hardware to perform more com-
plex computations for longer periods of time than a functional unit model, but incurs a greater
startup time.

This work targets integer operations within scientific computing applications. These
operations are word-sized, and tend to require complex memory access patterns unsuited
for stream-style computation. Therefore, we focus on an RFU model with a coarse-grained
internal structure. The coarse-grained structure will also permit the RFU to be reconfigured
more quickly between different instruction graphs. However, this paper focuses primarily on
the high-level interaction of the RFU with the processor, leaving the exact structure of the
coarse-grained reconfigurable fabric to future efforts.

Most groups limit the number of input and output operands to their RFUs, frequently
either to ensure that an operation can be expressed within a single opcode, or to prevent the
port count of the register file from expanding beyond a reasonable quantity. This constraint
effectively limits the size (latency) of the instruction graphs implementable by the RFU, but
also avoids the problem of differing output completion times. Another group [19] found that

K. Rupnow and K.D. Underwood 199

a significant number of their targeted graphs have a large number of outputs, thus they do
not limit the input or output count. Instead, like the new RFU architectures presented in this
paper, they use multiple RFU opcodes to encode a given graph to limit register file bandwidth.
However, they write graph outputs to the register file based on a worst case latency estimate
rather than when the output data is actually ready. Furthermore, because different outputs
may be required from a graph based on when in the application it is used, they write all
unique register destinations in the graph to architected state, whether or not those registers
are subsequently used for the given graph instance.

Section 3.3 presents analysis showing that on average only 50% of intermediate graph
values are used by later instructions, and for particular applications, as few as 25% are used.
This significant number of unnecessary register writes represents a significant amount of
wasted register file bandwidth. This paper proposes a new RFU architecture that uses a
shadow register file (SRF) to locally store graph outputs. A compiler tracks live values as-
signed to the SRF, and moves them to the architected state if later instructions will use that
data. A compiler could instead create a different RFU configuration for each case of different
output requirements. However, this would reduce configuration reuse, which in turn increases
configuration storage requirements and reconfiguration overhead penalties.

Previous register allocation schemes use techniques similar to this SRF approach to de-
termine which register values need to be committed to architected state. Moudgill et. al
[16] proposed a renaming algorithm that tracks whether a register name is the active owner
of an architected register, and how many consumers of that value have not yet received the
value. More recently, groups have proposed using this information to release the physical
register early once they have determined the register value will never again be used [2]. Other
techniques include specifically detecting operands that are only used once [11], tracking the
reorder buffer for subsequent writes to the same architected register without an intervening
read [14], and late allocation schemes that only allocate a physical register once the functional
unit generates the data and it is determined that there will be a consuming instruction [15].
These methods must decide whether to commit a value to architected state by the time the
value reaches the head of the reorder buffer.

The SRF used with this RFU will instead store data separately from the reorder buffer,
holding it until a subsequent write invalidates it or the data is copied to architected state.
The SRF also serves as local storage a different RFU graph uses a value currently stored in
the SRF, it will use the value directly out of local storage rather than forcing the value to
propagate through architected state.

3. Method. The new RFU architectures were evaluated using trace-based simulation
of an out of order execution model and a set of graphs selected from the target applications
using trace-based analysis. The simulations use the Structural Simulation Toolkit (SST) [21],
which couples a PowerPC trace [7] input with a SimpleScalar-based out of order execution
model [3]. SST supports multiple processors, a realistic memory hierarchy. Although SST
uses traces, it emulates of out of order execution with cache misses and wrong path execution.
The simulator scans each trace to generate a memory map of the application, which it then
uses to provide instructions to the out of order execution model. For normal execution, the
trace translation tracks the next correct instruction to execute. For wrong-path execution,
it provides the requested instruction from the memory map, with the instruction marked as
“fake” so that the trace interpreter and execution model know that the instruction is part of
wrong-path execution. This method provides a balance between determinant trace simulation
and emulation of wrong-path execution impacts seen in execution-based simulation.

The RFU architectures accelerate graphs previously selected using trace based analysis.
The trace analysis uses a greedy algorithm to generate and select graphs for RFU execution

200 RFU Design for Complex Scientific Dataflow Graphs

based on the size of the graphs, the number of times they are executed, and the percentage
of trace instructions they cover. Each application trace contains four billion instructions se-
lected by source code analysis and performance profiling to cover the “primary loop” of the
application. We use 32 total traces, of which 17 are traces of real scientific applications in
production use at Sandia National Laboratories and 15 are traces of the SPEC-FP benchmark
suite. The individual benchmarks are described in Table 3.

T 3.1
Benchmark Description

Suite Benchmark Description
Sandia Alegra Shock physics
Sandia Cth Shock physics
Sandia cube3 Sparse Matrix Solver
Sandia Its Radiation transport
Sandia lammps Molecular dynamics
Sandia Mpsalsa Chemically reactive flow
Sandia Xyce Circuit Simulation
SPEC-FP 168.wupwise Physics/Quantum Chromodynamics
SPEC-FP 171.swim Shallow Water Modeling
SPEC-FP 172.mgrid Multi-grid Solver: 3D Potential Field
SPEC-FP 173.applu Parabolic/Elliptic PDE
SPEC-FP 177.mesa 3D Graphics Library
SPEC-FP 178.galgel Computational Fluid Dynamics
SPEC-FP 179.art Image Recognition / Neural Network
SPEC-FP 183.equake Seismic Wave Propagation
SPEC-FP 187.facerec Image Processing: Face Recognition
SPEC-FP 188.ammp Computational Chemistry
SPEC-FP 189.lucas Number Theory / Primality Testing
SPEC-FP 191.fma3d Finite-element Crash Simulation
SPEC-FP 200.sixtrack High Energy Nuclear Physics Accel.
SPEC-FP 301.apsi Meteorology: Pollutant Distribution

T 3.2
Baseline Processor Configuration

RUU Size 64
LSQ Size 32
Fetch Width 4
Issue Width 8
Commit Width 4
ALU’s 3
Multipliers 1
Memory Ports 2
FP ALU’s 2
FP Multipliers 1
Instruction Cache 512K
Data L1 32K
L2 2M

K. Rupnow and K.D. Underwood 201

F. 3.1. ASAP Scheduling

3.1. RFU Architectures. We compare two sets of RFU architectures: the first set has
ready bits to allow intermediate output bypassing, and the second has ready bits plus a shadow
register file (SRF). The baseline architecture information is given in Table 3. Both of the
RFUs are coarse grained fabrics of add/subtract/logic and multiply/shift/rotate units con-
nected via a feed forward routing network, with input and output buffers. For each of these
RFUs, we test four variations with different maximum limits on the number of operands per
opcode. The operand limit constrains the total number of inputs and outputs per opcode, but
does not constraint how many operands within the limit are inputs vs. outputs. Maximums
of four, five, or six operands are intended to represent a reasonable limit on register file band-
width and instruction encoding. A maximum of fifteen total operands provides an extreme
upper bound on allowable register file bandwidth and instruction encoding.

Graph inputs and outputs are encoded in opcodes in the order encountered, based on the
premise that “early” inputs or outputs should be encoded before “late” ones. However, graph
scheduling affects this order. For example, an as late as possible (ALAP) scheduling may
cause an input use to occur much later in the ordering than an as soon as possible (ASAP)
scheduling. ASAP may be preferable if all inputs are available when the RFU instruction
begins execution, to maximize parallelism of graph computation. On the other hand, ALAP
may perform better if, for example, an RFU input is not yet ready, but is also not needed until
later in the graph execution.

Tables 3.1 and 3.2 show a comparison of the effects of ASAP and ALAP scheduling on
instruction encoding with a four-operand-per-opcode limit. In Table 3.1, the first two opcodes
encode all 8 inputs, and the remaining two opcodes encode the five outputs in the order they
would complete. Communication between the RFU opcodes of a single instruction graph
is encoded as part of the RFU configuration, and is not encoded in those opcodes. ASAP
scheduling moves all nodes with only external inputs to the top of the graph. Because of this
ordering, all input operands in this example will be encoded first, followed by outputs in the
order they complete. Thus, ASAP scheduling will likely have opcodes with only outputs,
which can issue immediately because they only provide output register numbers. Conversely,
ALAP scheduling will tend to interleave input and output operands so that inputs and related
outputs will often be encoded together.

3.2. Ready Bits. Ready bits are essentially flags associated with individual or groups
of compute elements in a larger structure. A true value indicates that the associated com-
pute structure has received its inputs and completed its computation. A false value indicates
that either the inputs are not yet available, or they are available but the computation is not
yet complete. Therefore, ready bits allow data to flow through multiple connected compute
structures as their inputs become available, and indicate when the overall computation out-

202 RFU Design for Complex Scientific Dataflow Graphs

F. 3.2. ALAP Scheduling

puts are complete. Dataflow processors use a similar approach, but generally communicate
through FIFO queues instead of a local routing network. When all inputs to a processing
element are ready, that element performs its computation and asserts the ready bit to place the
result into the queue(s) of the consumer(s). The ready bit prevents invalid data from entering
the queue due to a non-constant or even non-deterministic number of clock cycles between
outputs. However, the ready bit also allows computation to proceed as quickly as possible, as
the consumer does not have to always wait a worst-case number of cycles before it can safely
assume valid input data is present.

Each entry in the RFU’s the input buffer contains a ready bit, and each of the RFU’s
resources also contains an AND gate which combines the ready bits of the resource’s input
operands. RFU opcodes may be issued out of order, providing inputs at different times; the
ready bits indicate when the inputs have filtered through and graph execution is complete. The
RFU is considered busy (and unable to reconfigure or execute a new graph) until the ready bits
propagate to all of the outputs. Figure 3.3 illustrates an example using ready bits. Numbered
squares indicate register inputs to the graph, and diamonds in nodes indicate graph outputs.
Nodes not marked as outputs represent instructions that output to registers overwritten later
in the graph. Input and output nodes are numbered to identify unique operands. The first
RFU opcode is waiting for its input operands to be ready, and the following three opcodes
have already issued out-of-order. The ready bits for inputs 4-8 are set and results propagate
through the shaded instructions. In this case, the instructions that generate o3 and o4 are
complete, and both of those outputs are allowed to bypass to consuming instructions while
the rest of the graph waits for the final three inputs.

3.3. Shadow Register File Architecture. The shadow register file (SRF) is internal
storage for the RFU. RFU opcodes inform the RFU which architected registers are potential
graph outputs based on graph instructions writing values to unique registers not overwritten
by later graph instructions. When the graph executes, the RFU stores graph results into
the SRF instead of back to the architected register file. This means that RFU opcodes can
effectively commit for free, and do not count against instruction limit or register file port
limit. A compiler can track which potential graph outputs are resident in the SRF. If other
RFU instructions use values currently stored in the SRF, then they may use the value directly
instead of retrieving it from the architected register. Otherwise, if a non-RFU instruction
needs a value stored in the SRF, the compiler inserts move instruction to transfer the value
from the SRF to the architected register file. Because the RFU instructions no longer write
data to architected state, they can commit and exit the reorder buffer. However, the penalty
is the need for inserted move instructions, which are blocked by the RFU ready bits until the
needed value is ready. Moves from the SRF are destructive, so subsequent reads will take

K. Rupnow and K.D. Underwood 203

F. 3.3. Ready Bits in RFU Graph Execution. The first opcode is waiting for inputs to be ready. The following
three opcodes have already issued out of order.

the value from the architected register (avoiding coherence problems). SRF locations are also
invalidated if another non-RFU instruction writes to the same architected register, as they
will no longer contain the most current data for that register. By only sending data values that
are needed to the architected register file, we can reuse RFU configurations and efficiently
handle a large and potentially variable number of outputs while minimizing the register file
bandwidth used by the RFU.

The trace analysis portion of the SST simulator emulates SRF operation. First, the sim-
ulator finds sets of instructions belonging to graphs chosen for acceleration. Next, those
instructions are replaced by a sequence of RFU opcodes that encode graphs operands us-
ing the architecture’s operand limit. Trace analysis keeps track of the architected register
numbers held in the SRF, and inserts special move opcodes before subsequent reads of those
registers. In the execution model portion of SST, the commit operation detects RFU opcodes
and commits them for free.

Because the SRF only tracks a single value per architected register, write after write data
hazards could be a potential problem if RFU opcodes are issued out of order. However, this
is only the case for RFU opcodes from differing instruction graphs, since only final writes to
registers are considered outputs, and will write to the shadow register file. Intermediate writes
to those registers instead are identified as internal RFU communication. To prevent write after
wrote data hazards, the RFU must only contain a single instruction graph, and applications
cannot resuse this graph until it is done with the current iteration of the instruction graph.
When the first RFU opcode for a given graph issues, it allocates the RFU, and the RFU will
remain busy until the entire graph of computation completes. This prevents out of order
completion of RFU graphs, which also prevents write after write data hazards.

4. Results. We present performance results from an RFU architecture that includes
ready bits followed by register usage analysis to motivate the use of the shadow register file,
and then compare to an RFU architecture with ready bits and a shadow register file. Applica-
tion speedups are compared for both architectures, along with instruction fetch queue (IFQ),
register update unit (RUU) and load/store queue (LSQ) occupancy. Finally, we compare ap-
plication speedup and average number of opcodes needed to encode a graph to previously
published results [19].

4.1. RFU Architecture: Ready Bits. The RFU architecture with ready bits achieves up
to 8.8% speedup on the applications studied. Overall, the RFU accelerated 26 of the 32 appli-

204 RFU Design for Complex Scientific Dataflow Graphs

F. 4.1. Ready Bits Architecture Speedup Over Baseline by Number of Operands per Opcode (Selected Appli-
cations)

cations, some by as much as 8.8%. Although 6 of 32 traces had slowdown, four were slowed
less than 1%, and none more than 1.7%. Although only 2 of the 15 SPEC-FP traces achieve
2% or more speedup, 8 of the 17 real scientific application traces achieve 2% or more speedup
for at least one of the three tested operand limits. Figure 4.1 shows the speedup of selected
applications over the baseline architecture for varying numbers of maximum operands per
opcode from both benchmark suites, as well as the average performance for all SPEC-FP and
all Sandia applications. In many of the cases, increased operands per opcode degrades per-
formance because the opcodes cannot commit until all of the outputs in the opcode complete.
The idealized 15 operand per opcode limit ready bits architecture shows the same effect. In
many cases it is slower than the other architectures because the entire graph is encoded in one
opcode, and thus cannot commit until the entire graph execution is complete.

4.2. RFU Architecture: Ready Bits + Shadow Register File. Although graphs may
have a large number of potential outputs (uniquely written intermediate registers), a signif-
icant percentage of these may not be used by subsequent instructions. However, because
different uses of a particular graph of instructions in different areas of the application may
use different outputs, they cannot necessarily be eliminated as potential outputs. Five of the
seventeen Sandia traces use fewer than 30% of potential graph outputs, and on average Sandia
applications use only 52% of the potential graph outputs. Some applications do not tend to
use many of the possible graph outputs, others use almost all graph outputs. Two SPEC-FP
benchmarks, 173.applu and 178.galgel, both use over 95% of potential graph outputs. Figure
4.2 shows the average number of graph outputs used per application and averages for the
SPEC-FP benchmark suite and Sandia applications.

Adding an SRF to the architecture with ready bits yields up to a 13.9% speedup over
baseline, and 11.8% over ready bits alone, with all applications accelerated to some degree.
These speedup values account for the overhead of the added move instructions. Some of the
best application speedups are on the applications that use a low percentage of graph outputs.
Application speedups are within 1% of the idealized 15 operand limit SRF architecture in

K. Rupnow and K.D. Underwood 205

F. 4.2. Percentage of Potential Graph Outputs Actually Used

all but two cases. These two traces, lmp.flow and lmp.lj, are 2.2% and 1.3% worse than the
15 operand limit SRF respectively. Increasing the operand count to the idealized 15 operand
limit in the SRF case does not degrade performance because, with the SRF, the opcodes still
commit for free. Thus, the 15 operand SRF architecture is always equal to or better than the
smaller operand limits because it can take advantage of increased encoding efficiency without
causing the opcodes to wait longer to commit. As might be expected, the 15 operand limit
SRF architecture performance is identical for ASAP encoding and ALAP encoding because
the graphs are encoded in a single instruction.

Although in the architecture with ready bits but no SRF, ALAP scheduling achieves triv-
ially better speedup than ASAP (less than 0.5% difference), with the SRF, ASAP scheduling
achieves as much as 4% better speedup than ALAP. In the ready bits architecture, opcodes
with interleaved operands can improve performance because an operand with a mixture of
inputs and outputs may have less outputs to wait to commit. The architecture with a SRF
removes that sensitivity because the RFU opcodes no longer wait for outputs to commit. In-
stead, when the graph performance is sensitive to the encoding at all, it benefits from having
inputs encoded first to enable the architecture to begin computation as quickly as possible.
Furthermore, opcodes with only outputs can issue immediately because no inputs are present
in the opcode that can block issue. ALAP encoding order of operands does not necessarily
correspond to the timing of when input values will actually be ready, so interleaved inputs
and outputs can slow issue of output information waiting for late arriving inputs.

Figures 4.3 and 4.4 compare the maximum speedup achieved by any ready bits archi-
tecture without SRF to the maximum speedup for the ready bits plus SRF architecture for
SPEC-FP and Sandia applications respectively. Although SPEC-FP applications show rela-
tively small performance improvements by adding an SRF to the ready bits support, all of
the applications that slowed by the ready bits architectures achieve speedup with the SRF. In
contrast, nearly every Sandia application achieves significantly higher performance with the
SRF, which correlates to the fact that Sandia averages fewer outputs used per graph, and so
Sandia applications save more by writing only the needed outputs to the architected register
file. For the architecture with ready bits but no SRF, encoding more operands per opcode pro-
vides little incremental benefit. In fact, Figure 4.1 showed that in many cases the application
performance decreases when additional operands are encoded per opcode. Although graph
outputs can bypass to consumers as soon as they complete, the opcode cannot commit until
all outputs for that opcode complete. Opcodes with many outputs may therefore wait longer

206 RFU Design for Complex Scientific Dataflow Graphs

F. 4.3. Maximum Application Speedup - Ready Bits vs. Ready Bits + SRF (SPEC-FP)

F. 4.4. Maximum Applications Speedup - Ready Bits vs. Ready Bits + SRF (Sandia)

to commit than opcodes with fewer outputs, degrading performance. In contrast, because the
SRF architectures do not wait on output readiness to commit RFU opcodes (regardless of
the number of operands) their performance improves as the number of operands per opcode
increases.

Both architectures cause a decrease in average RUU occupancy that ranges from 1%
in the common case to as much as 10% in specific cases. The SRF architecture achieves
lower average RUU occupancy than the ready bits architecture without SRF despite a larger
total number of instructions (the inserted move instructions). Because the RFU instructions
commit for free (they do not write values to the architected register file), they spend less time

K. Rupnow and K.D. Underwood 207

in the RUU, thus freeing space for other register updates. Similarly, both RFU architectures
cause an average decrease in IFQ occupancy. However, although the architecture with a
shadow register file on average decreases LSQ occupancy, the architecture with only ready
bits on average increases LSQ occupancy. Because store instructions acquire a memory port
at commit, the amount of time they spend in the LSQ is determined based on how quickly
they commit. In the ready bits architecture, long latency RFU operations may delay commit
at the head of the RUU, thus delaying later store operations. In contrast, RFU operations in
the SRF architecture will commit quickly, reducing the delay on later store operations and
thus LSQ occupancy.

4.3. Comparison to Previous Data. Previously published results demonstrate
speedups between 0.2% and 22.6% across a range of applications [19]. However, that ar-
chitecture also negatively impacted 12 of the 32 traces with slow downs of as much as 6.3%.
The previous work also assumed a simplistic processor model. The execution model used
in this paper is more sophisticated, and includes wrong path execution, a realistic instruction
cache, out of order issue for the RFU instructions, individual output bypassing for each of the
RFU’s outputs, and operand flexible instruction encoding. The ready bits architecture accel-
erates applications by 0.2% to 8.8% and slows only six applications by at most 1.8%. The
SRF architecture achieves speedups between 0.3% and 13.9%, with an average speedup of
1.5% for SPEC-FP benchmarks and 2.7% for Sandia applications. Furthermore, no applica-
tions were slowed by the RFU with a SRF. Figure 4.5 shows six of the best speedups over the
previously published data, the three worst slowdowns, and the average over the entire SPEC-
FP benchmark suite and the Sandia applications. For each of these measurements, the figure
displays the best application performance over all tested architectures. For the three SPEC-
FP benchmarks shown, the SRF architecture outperforms the best case previously published
result by 6.5-15.3%.

Although the three best performing applications from the prior results perform signifi-
cantly better than the new architectures, the SRF architecture still achieves speedup between
5.2% and 8.3% for those three applications. One possible reason for better results in the
previous work is that they used an idealized architecture (for both the baseline and RFU ar-
chitectures) that assumes a perfect instruction cache and prevents wrong path execution. The
model used for this study instead allows wrong path execution and models a realistic instruc-
tion cache.

The previously published operand encoding algorithm is not directly comparable to our
current method’s although their maximum number of operands is similar, they limit inputs
and outputs separately, and never allow more than four outputs in an opcode. In contrast, the
proposed encoding method limits only the total operand count, providing more flexibility to
the encoder. The proposed encoding method will not only always fill opcodes with operands
when possible, but will also likely encode more outputs than allowed previously given that
the previous output limits were often lower than the new total operand limits. Approximately
25% fewer opcodes are required to encode an RFU operation in the new architectures versus
the previous, and the new architectures often outperform the previous even when the previous
can encode a larger number of operands per opcode. This is due to two causes. First, the
new architectures can better fill each opcode because inputs and outputs are not separately
limited. Second, in the new architecture, the output encoding can be provided before the
output is ready, whereas the prior model provided output encoding only after the output will
be ready. This additional flexibility allows us to guarantee that each graph will be encoded in
the minimum number of opcodes given the operand limit per opcode.

5. Conclusion. In real scientific applications, kernels of computation may have large
numbers of both input and output operands. It is important that new RFU architectures can

208 RFU Design for Complex Scientific Dataflow Graphs

F. 4.5. Average Application Speedup

accelerate the complex graphs of computation present in modern applications. Therefore,
RFU architectures need to efficiently handle many inputs and a large and potentially variable
number of outputs. This paper presented an RFU architecture that meets these requirements
by using multiple opcodes to collaboratively describe a graph, using ready bits to allow out-
puts to complete and bypass to consuming instructions individually, and most importantly,
using a shadow register file (SRF) to support a large number of outputs yet minimize the
number of writes to the architected register file. The proposed RFU architecture with an SRF
accelerates all of the applications, with speedups of up to 13.9% over the baseline architecture
and 11.8% over an RFU architecture with ready bits but no SRF. Furthermore, SRF-based ar-
chitectures with four, five or six maximum operands per opcode achieve at least 98% of the
speedup of the idealized 15 operand limit, and in most cases achieve speedups within 0.1%
of the 15 operand limit. Thus, the new RFU architecture with ready bits and an SRF is able
to effectively accelerate production applications that exhibit complex program behavior.

REFERENCES

[1] J. M. A, S5: The architecture and development flow of a software configurable processor., in IEEE
International Conference on Field Programmable Technology, Dec 2005, pp. 121–128. crossref:
DBLP:conf/fpt/2005.

[2] D. B, J. S, D. P,  K. G, Selective writeback: exploiting transient values for
energy-efficiency and performance, in ISLPED ’06: Proceedings of the 2006 international symposium
on Low power electronics and design, New York, NY, USA, 2006, ACM Press, pp. 37–42.

[3] D. C. B  T. M. A, The simplescalar tool set, version 2.0, Tech. Report CS-TR-97-1342, Uni-
versity of Wisconsin, Madison, 1997 1997.

[4] B. C, D. G,  J. E, Predictive sequential associative cache, 1996, pp. 244–253.
[5] N. C, J. B, M. C, S. M, S. B,  K. F, An architecture framework for trans-

parent instruction set customization in embedded processors, in ISCA ’05: Proceedings of the 32nd
International Symposium on Computer Architecture, 2005, pp. 0–12.

[6] D. C. C, C. F, M. F, P. F,  C. E, Architecture design of reconfigurable
pipelined datapaths, in Advanced Research in VLSI, 1999. Proceedings. 20th Anniversary Conference
on, 1999, pp. 23–40.

[7] A. A. P. G, Computer Hardware Understanding Development Tools 2.0 Reference Guide for MacOS X,

K. Rupnow and K.D. Underwood 209

Apple Computer Inc, July 2002.
[8] S. H, T. W. F, M. M. H,  J. P. K, The Chimaera reconfigurable functional unit, in FCCM ’97:

Proceedings of the 5th IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer
Society, 1997, p. 87.

[9] J. R. H  J. W, Garp: A MIPS processor with a reconfigurable coprocessor, in FCCM ’97:
Proceedings of the 5th IEEE Symposium on FPGAs for Custom Computing Machines, IEEE Computer
Society Press, 1997, pp. 12–21.

[10] A. H, G. J, D. J. K, M. L,  S. P, A performance comparison through bench-
marking and modeling of three leading supercomputers: Blue Gene/L, Red Storm, and Purple, in SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, New York, NY, USA, 2006, ACM
Press, p. 74.

[11] T. M. J, M. F. R. O’B, J. A, A. G, O. E, Compiler directed early register release,
in Parallel Architectures and Compilation Techniques, 2005. PACT 2005. 14th International Conference
on, 2005, pp. 110–119.

[12] I. K  M. H. L, Macro-op scheduling: Relaxing scheduling loop constraints, in MICRO 36: Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture, IEEE Computer
Society, 2003, p. 277.

[13] P. M  A. S, Data-flow prescheduling for large instruction windows in out-of-order processors,
in Proceedings of the Seventh International Symposium on High-Performance Computer Architecture
(HPCA’01), IEEE Computer Society, 2001, p. 27.

[14] T. M, V. V, A. G, M. V, Hardware schemes for early register release, in Parallel
Processing, 2002. Proceedings. International Conference on, 2002, pp. 5–13.

[15] T. M, V. V, J. G, A. G,  M. V, Late allocation and early release of
physical registers, Transactions on Computers, 53 (2004), pp. 1244–1259.

[16] M. M, K. P,  S. V, Register renaming and dynamic speculation: an alternative
approach, in Microarchitecture, 1993. Proceedings of the 26th Annual International Symposium on,
1993, pp. 202–213.

[17] S. P, N. P. J,  J. E. S, Complexity-effective superscalar processors, 1997, pp. 206–218.
[18] R. R M. D. S, A high-performance microarchitecture with hardware-programmable functional

units, in MICRO 27: Proceedings of the 27th Annual International Symposium on Microarchitecture,
ACM Press New York, NY, USA, 1994, pp. 172–180.

[19] K. R, K. D. U,  K. C, Scientific application acceleration with reconfigurable func-
tional units, Procedings of the IEEE International Conference on Field Programmable Custom Comput-
ing Machines, (2007), pp. 1–10.

[20] J. S, M. D. B,  Y. N. P, On pipelining dynamic instruction scheduling logic, 2000, pp. 57–66.
[21] K. D. U, M. L,  A. R, Simulating Red Storm: Challenges and successes in

building a system simulation, in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, 2007, pp. 1–10.

[22] M. J. W  B. L. H, Sequencing run-time reconfigured hardware with software, in FPGA ’96:
Proceedings of the Fourth ACM International Symposium on Field-Programmable Gate Arrays, ACM
Press New York, NY, USA, 1996 1996, pp. 122–128.

[23] R. D. W  P. C, OneChip: an FPGA processor with reconfigurable logic, in FCCM ’96: Proceed-
ings of the IEEE Symposium on FPGAs for Custom Computing Machines, 1996, pp. 126–135.

CSRI Summer Proceedings 2007 210

ARCHITECTURAL EXTENSIONS FOR EXECUTING FLOATING POINT
INSTRUCTION AGGREGATES

PATRICK LA FRATTA∗, ARUN RODRIGUES†, AND KEITH D. UNDERWOOD‡

Abstract. Floating point computation comprises a large portion of execution time in many modern applications,
such as scientific simulation codes run at Sandia National Laboratories. In a conventional superscalar, out-of-order
architecture, each floating point operation is executed as a single instruction. This work explores an alternative exe-
cution model in which groups of dependent floating point operations are encoded into a single instruction, called a
floating point instruction aggregate (FPIA). We present the requirements of an architecture to support such instruc-
tions, and estimate the potential performance improvements offered by such an architecture through simulation. The
results show improvements of over 7% in execution time.

1. Introduction. Many modern applications demand increasing levels of performance
from supercomputers, and a large number of these spend a significant amount of execution
time performing floating point (FP) computation. For example, at Sandia National Labora-
tories, simulation codes that seek to solve several scientific problems have been shown to
contain instruction mixes with up to 25% FP computation [8].

In a conventional superscalar processor supporting out-of-order (OoO) execution, each
instruction executed in the pipeline requires a certain amount of overhead in execution time.
For example, each instruction consumes resources (such as in the issue queue and reservation
stations) and must undergo dependence checking.

This work explores an approach to reducing this overhead for floating point instruc-
tions by encoding dependent floating point operations into a single instruction prior to run-
time. The resulting multi-operation instruction is called a floating point instruction aggregate
(FPIA). This paper presents an architecture for executing FPIAs, and analyzes the content of
applications to determine the properties of a typical FPIA. The results from these analyses
are used to set design parameters for the architecture. We then estimate the potential perfor-
mance improvement of this architecture over conventional OoO processors. The performance
estimate is obtained using trace-driven simulation, where the trace has been transformed to
contain FPIAs.

The section that follows presents an overview of the FPIA architectural extensions. Sec-
tion 3 gives our methodology used for FPIA design and evaluation. Section 4 offers a brief
description of past work with instruction aggregates. Section 5 presents the details of graph
analyses and corresponding results. Our approach to performance evaluation through simu-
lation is given in section 6, along with the performance results. In section 7, we summarize
and describe future tasks of interest.

2. FPIA: A Conceptual Overview. The goal of FPIA is to group FP operations prior
to run-time, encoding all information necessary to execute these operations, including depen-
dence information and register I/O, in a single instruction. The reasons for this are to both
reduce single-instruction overhead incurred by each FP operation in the conventional OoO
architecture and to expose parallelism prior to run-time. This simplifies the requirements of
the OoO execution hardware.

The execution of these multi-operation instructions requires a special organization of
floating point functional units (FUs). The organization considered here is a 2-dimensional
array of FUs with the interconnect necessary to route operands among them and distribute

∗University of Notre Dame, plafratt@nd.edu
†Sandia National Laboratories, afrodri@sandia.gov
‡Intel Corporation, kdunder@gmail.com

P. La Fratta, A. Rodrigues and K.D. Underwood 211

F. 2.1. FPIA Microarchitectural Extensions and Design Parameters

required register values to and from them. However, the details of such an organization are
not immediately clear. For instance, how many FUs should be in the array? What are the
dimensions of the array? What interconnect and bandwidth are required? These are just a
few of the questions, and the answers are dependent on the characteristics of the FPIAs that
are extracted from applications. Hence, it is also important to know the characteristics of
FPIAs that exist in applications.

Figure 2.1 shows FPIA extensions to a conventional processor, along with design param-
eters that need to be specified. The array requires other special hardware shown in the figure.
For instance, a special register file contains register values that are fed to and from the FUs in
the array. One important question is how values are collected and distributed to and from the
conventional register files. Are direct channels provided or are special instructions needed for
moving data in and out of the FPIA register file? Another question is where are the FPIAs
fetched from? Is it feasible to store them in a small, dedicated memory (shown as the Graph
Table in the figure), and if so, how large is this table?

These are only a few of the interesting questions, and this work does not seek to answer
all of them. The analysis presented in section 5 seeks to characterize the typical FPIA in-
structions from the extraction process and fill in the design parameters of Figure 2.1 based on
these results.

3. Related Work. Instruction aggregates have been explored in previous research, but
in different forms than considered here. Minigraphs are similar in many aspects to FPIA,
but are limited to instruction aggregates with a bounded, small number of inputs and outputs

212 FPIA

[2, 1]. Sharkey et al. considered instruction packing, sharing pipeline resources between
pairs of instructions, with consideration to performance and power consumption [9]. Macro-
op scheduling focuses on combining instructions of single-cycle latency [5]. The issue and
execution of instruction groups in instruction level distributed processing is similar to the
method considered here, but the organization of hardware, especially that of the FUs, differs
[4].

One primary difference between this work and past work is the focus on floating point,
for which we must take into account special considerations. Compared to the general case in
which integer computations comprise a large portion of the aggregates, the hardware design
space is more restricted. Certain details of the capabilities of FUs must be considered, such as
the operations that a given FU is able to perform [3]. Run-time reconfiguration considered by
work focused on integer computation is not feasible in the context of floating point. Addition-
ally, the interaction of the FPIA components with conventional OoO hardware is an important
design consideration. Overall, the specification of hardware design parameters, such as those
in Figure 2.1, is of key importance in this context.

4. Methodology. The FPIA design and evaluation process begins with the analysis of
applications to determine the properties of dependence graphs that can potentially be con-
verted to FPIAs. The simulation of applications enhanced with FPIAs is used to estimate
their performance. The analysis tool and simulator are based on the Structural Simulation
Toolkit (SST) [6], and their use is centered on eighteen traces of eight applications with var-
ied inputs.

4.1. Applications. Traces of a suite of eight of Sandia’s scientific applications are used
in this study. The applications cover a wide range of purposes, including molecular dynamics
(LAMMPS), shock mechanics of solids (CTH), radiation transport (ITS), and circuit simula-
tion (Xyce). These applications have important properties that set them apart from standard
benchmarks, such as those found in the SPEC suite. Large basic block sizes, large working
sets, and instruction mixes with high percentages of floating point are a few notable proper-
ties [7, 8]. In the analysis phase, traces of 4 billion instructions are used for all applications
other than sPPM, whose trace is 2 billion instructions. In the simulation phase, a trace of 100
million instructions is used for each application.

4.2. SST. For the simulations, we used the Structural Simulation Toolkit (SST) [6]. The
frontend of the simulator reads in an instruction trace of the application, and the instructions
from the trace are fed to the backend which is based on the SimpleScalar model of an OoO
processor. The backend models the activity that occurs to estimate the execution time of an
OoO processor. This framework is used unmodified to obtain the baseline performance num-
bers for comparison against FPIA. The frontend is modified for FPIA code transformation,
and the backend OoO model is extended with components for executing the FPIAs. The
details of these modifications are given in section 6.1.

5. Analysis of FPIA Content of Applications. This section first presents the process
used to extract FPIAs from applications. To determine an efficient design based on the pa-
rameters given in Figure 2.1, we have gathered statistics to characterize a typical FPIA. The
relevant statistics corresponding to the parameters are listed, and the results are presented.

We used a set of traces of Sandia’s simulation codes for these experiments. Using traces,
as opposed to execution, simplifies the experiments. The goal is to study the FPIA content in
the applications. This will justify future work with FPIA extraction with actual codes.

5.1. FPIA Extraction. This process for FPIA extraction considers instructions grouped
by basic block (instructions occurring between two branches) so that complications arising

P. La Fratta, A. Rodrigues and K.D. Underwood 213

F. 5.1. Overview of FPIA Extraction Process

due to branch prediction can be ignored. Dependence graphs including all non-FP instruc-
tions are first generated for the entire basic block. The subgraphs of FP operations are then
extracted from these graphs. This set of subgraphs is used as the basis for the characterization
in the next section. Figure 5.1 shows an overview of this process.

Certain complications arise during the extraction process that must be considered. As
an example, consider how a graph of FP operations interacts with non-FP operations. It
is likely feasible to assume that non-FP instructions providing input register values can be
executed before the FPIA, and instructions using register values produced by the FPIA can
be executed afterwards. The register values will be propagated to and from the FPIA register
file accordingly. However, how should we handle graphs that contain a non-FP instruction
that both uses an output from the graph an then produces an input for the graph? In general,
this goes back to the question of how the FPIA hardware interacts with the conventional
hardware. One option to handle this case is to allow the FPIA FU array to synchronize with
the non-FP FUs in order to obtain the needed value. However, this complicates the design.
Another option is to cut the graph into pieces so that the intermediate operation is no longer
both a consumer and producer for a graph. In these experiments, we have found that this case
is rare, occurring in less than 2% of the graphs in most cases, and so we do not aggregate
these graphs. However, this is a corner case for FPIA in general that should be considered
when necessary.

5.2. FPIA Characterization. To determine a set of values for an effective design based
on Figure 2.1, we have tracked statistics of FPIAs based on the extraction process given
in the previous section. Figure 5.2 shows characteristics of the graphs that correspond to the
design parameters. An execution trace of 4 billion instruction is analyzed for each application.
All results for these analyses are appended to the end of the paper, and a summary of the
results is shown in Figure 5.2. This summary shows that if we design the hardware for a
given parameter value, this will allow the execution of a certain percentage of the graphs for
sixteen out of eighteen applications, given no other hardware limitations. Considering sixteen
applications gives us tolerance for at most two outliers.

The breakdown of this summary is given in Figures A.2 through A.6. These figures show
the percentage of graphs we will be able to execute when designing for a given parameter
value, given no other limitations. For instance, if we design for graphs of size 16, this will

214 FPIA

F. 5.2. Map of Parameters to Properties

F. 5.3. Design Parameter Values from Graph Analysis

allow the execution of about 95% of the graphs in cth.4B.2gas.
Graph size, shown in Figure A.2, is simply the number of vertices in the graphs. Given

an ASAP scheduling of the operations in the graph, the width (Figure A.4) is the maximum
number of operations in a given layer, and the depth (Figure A.3) is the number of layers.
Register inputs (Figure A.5) and outputs (Figure A.6) are the number of unique register values
produced and consumed by all instructions in the graph. The number of wide memory inputs
(Figure A.7) is an estimate of the number of unique cache lines that are touched with loads,
and the number of wide memory outputs (Figure A.8) is an estimate of the number of unique
cache lines touched with stores.

The number of unique FP subgraphs in a typical application has implications on the
design, such as whether or not storing the FPIAs in a table is feasible, and the size of the
table. To determine the number of unique FP subgraphs, we build a list of unique graphs as
the application is analyzed. When a new graph is generated, isomorphism is run against each
unique graph in the list. In order for two graphs to be isomorphic, they must have the same
structure. The results for this analysis is shown in Figure A.1 as Iso with No Op Comparison.
The analysis was also run for the case in which isomorphism requires that there exist a vertex
map matching operations between the graphs. These results are shown in Figure A.1 as Iso
with Op Comparison. This analysis is performed to take into account that an FP FU may not
be able to perform all types of FP operations, which will place additional restrictions on the

P. La Fratta, A. Rodrigues and K.D. Underwood 215

design space.

5.3. Conclusions. From the results of the analyses, we see that the graphs usually have
no more than 16 operations, and are narrow and deep. An FU array that has dimensions 16x1
will allow execution of over 75% of the graphs for most applications, while dimensions of
32x2 will allow execution of almost all the graphs. From this, we assume that the typical
FPIA we will execute has 32 operations. Using the number of register inputs and outputs
from the table, we can get a rough idea of the size of one of these instructions, assuming
all information is encoded into a single package. Assuming no more than eight types of FP
operations, the operation can be specified in 3 bits. Routing the results among the FU array
also requires bits in the instruction. For this approximation, we will assume that each of the
32 operations requires 4 bits to route its results. If we assume 64 entries in the FPIA register
file, and design for 32 register inputs, we will need 192 bits for input register values, and then
96 bits for the 16 output register values. As shown in Figure A.1, the number of unique graphs
is generally no more than 75 in the case of isomorphism with no op comparison, and no more
than 150 with op comparison. But if we are conservative and use the maximum values of 209
and 304, the total sizes of tables for storing all FPIAs, are:

[32*3 (ops) + 32*4 (routing) + 192 (inputs) + 96 (outputs)] bits/inst. = 512 bits/inst.

512 bits/inst. * 209 insts. = 13376 bytes. (no op comparison in isomorphism)

512 bits/inst. * 304 insts. = 19456 bytes. (with op comparison in isomorphism)

A 16- or 32-KB memory dedicated for storing all FPIAs certainly seems feasible, given
that many modern processors have a few MB of on-chip cache. Note that this assumes no
immediate values (for now we’ll assume that all values come from registers). One other
simplifying assumption made by these calculations is that in order for two graphs to be iso-
morphic, they don’t necessarily need the same register indices as inputs and outputs. This
factor may change the size of the table, but this consideration is saved for future work.

6. FPIA Performance Evaluation. This section explains the approach used for esti-
mating the execution time of an application enhanced with FPIAs run on a machine based on
the design shown in Figure 2.1. With the simulation results, we compare this execution time
to the time required to execute the original application on a conventional superscalar OoO
processor.

6.1. Simulation Approach. For this work, we modified the frontend and backend of
SST. In the frontend, our extensions extract the dependence graphs from the trace as in the
analysis phase described in the previous section. However, in this stage we filter the graphs
based on the statistics from the analysis. The FP instructions in a graph are replaced with the
FPIA, which is tagged with the appropriate dependencies inherited from the FP instructions.

The backend is extended to include a special FU model for executing FPIAs. Here, we
modeled the FU array shown in Figure 2.1 as a single FU object in the simulator. Here are a
few important simplifying assumptions made by this model.

First, the simulation ignores structural hazards. If an FPIA has no unresolved dependen-
cies and is issued, it is able to execute. Next, the FU object can execute any FPIA, regardless
of dimensions or operation content. Also, since the FU array is modeled as a single FU, we
ignore the complexities of scheduling individual operations to FUs. The simulator also ig-
nores any limitation due to instruction encoding, and the delay of an FPIA is assumed to be
its critical path with an ASAP scheduling. Finally, output bypassing is implemented, which
allows instructions dependent on register values produced by the FPIA to proceed when the
register values are available at the outputs of the functional units.

216 FPIA

F. 6.1. Overview of FPIA Transformation Process

6.2. FPIA Insertion. One issue that is faced is where the FPIA should be placed in the
transformed code. Although the most straightforward approach is to simply choose the posi-
tion of one of the FPIAs FP instructions, this will lead to problems. Consider four instructions
A, B, C, and D, appearing in this order in the trace. B is dependent on A, and D is dependent
on C. A and D are also FP instructions that will be replaced by an FPIA, E. After A and D
are removed, E cannot be inserted in the position of A, because it must come after C due to
its dependence on C. But E cannot be inserted in the position of D, because it must come
before B, since B is dependent on E. Since E must come before B but after C, the position of
B and C must be switched, with E inserted between then.

A solution to the general problem of FPIA insertion is to collapse all FP instructions that
will be replaced by an FPIA into a single vertex. Topologically sort the new graph, and order
the instructions in order of the sort. This process is shown in Figure 6.1.

Note that after FPIA extraction there will always exist a “good” ordering: one for which
all instructions on which instruction i is dependent are before i. A topological sort on a
dependence graph will always produce a good ordering. So, as long the new graph with the
constituent FP operations of the FPIA collapsed into a single vertex is still acyclic, we can
get a good ordering through a topological sort. The only way the new graph would contain a
cycle is when the FPIA requires an intermediate non-FP operation. This is another advantage
of throwing out FPIAs with intermediate non-FP operations. A more thorough proof of the
claim is given below.

Claim. Given a set I of instructions in a basic block, ∃ a good ordering for I after
extraction of an FPIA F.

Proof. To order the instructions, they are inserted into a sequence of slots. It is sufficient
to show that if an instruction i is inserted into the next available slot, then @ an instruction on
which i is dependent that hasn’t been inserted (an available instruction). This is the same as
showing that @ a path in the dependence graph from any available instruction to i.

All instructions that are part of the FPIA F are in a set P. We assume F cannot require
intermediate non-FP instructions. This means that ∀ pairs of instructions (x,y) ∈ P, @ a path
from x to y through some z < P.

Consider each instruction i < P. If ∃ a path from i to some p ∈ P, then i ∈ S . If ∃ a
path from some p ∈ P to i, then i ∈ T . Otherwise, i ∈ U. S ∩ T = ∅ because if ∃ a path
from i to some p ∈ P and ∃ a path from some q ∈ P to i, then ∃ a path from q to p through i,
which is a contradiction. P, U, S , and T are disjoint by definition. So, when we consider the
instructions in a set, these instructions are distinct from the instructions in the other sets.

Create a subgraph SG0 consisting of all instructions in S . Topologically sort SG0. As-

P. La Fratta, A. Rodrigues and K.D. Underwood 217

suming that the graph was constructed correctly, this implies that in this order, all dependen-
cies for an instruction i from instructions in S will be satisfied beforehand, by definition of
topological sort.

We will now show that the instructions in S can be inserted in the first slots by order of
the topological sort of SG0.
∀ (s,p) | s ∈ S and p ∈ P, @ a path from p to s by definition of S . ∀ (s,u) | s ∈ S and u ∈

U, @ a path from u to s. If a path from u to s exists, then a path from u to some p ∈ P would
exist through s, so u would be in S by definition. ∀ (s, t) | s ∈ S and t ∈ T , @ a path from t to s.
If ∃ a path from t to s, then ∃ a path from some p ∈ P to t, a path from t to s, and a path from
s to some q ∈ P. This implies a path from p to q through t and s, which is a contradiction.
Hence, the instructions in S can be inserted in the first slots by order of the topological sort
of SG0.

Schedule F next. All of its dependencies are satisfied, because all of the instructions on
which it is dependent are in S and have been inserted. All instructions in T and U can be
inserted after the FPIA, because, by definition, @ a path from t ∈ T to p ∈ P and @ a path from
u ∈ U to q ∈ P.

Create a subgraph SG1 consisting of all instructions in U and T . Topologically sort SG1
and insert the instructions in this order. The topological sort will ensure that all dependencies
are satisfied before an instruction in SG1 is inserted.

6.3. Results and Conclusions. The performance results from the simulations are given
in Figure 6.2. Each application was run for 100 million instructions.

It is important to note that the reordering of instructions by itself will affect the perfor-
mance of the application. We are not interested in changes in performance brought about by
instruction reordering, but by the FPIAs. The instruction reordering is necessary for correct
execution, and in the future we hope to have better insertion algorithms that require fewer
changes to the original instruction stream.

We separate the performance benefits of reordering from that of the FPIAs. The leftmost
bars in the sets of Figure 6.2 show the speedup of the application with the reordering but with
no FPIAs. Then, to calculate speedup for the cases where FPIAs are used, we use either the
results before or after reordering as the baseline, whichever is better.

The second bar in the sets, labeled 2-32: Accelerated, indicate the execution time when
all graphs are assigned a delay of 1. The goal of these simulations was to get a rough upper
bound on the performance improvement. The next three bars show the performance results
with three different graph size limits. That is, for the results labeled 2-32, only FPIAs within
that size range, inclusive, are extracted.

In most cases, the results show that FPIAs are detrimental to performance. However, for
one trace, the FPIAs offer a speedup of over 7%. This shows that FPIAs do offer performance
benefits in certain situations. Hence, there is a distinction that must be made in future studies
between good and bad FPIAs.

There are two primary reasons we believe that FPIAs are detrimental to performance in
these simulations. First is that in the current model, all operations in the FPIA must wait
on all of the inputs before proceeding. This can cause the FPIA to prevent instructions from
being issued that would otherwise be free to execute independently. Since an instruction is
prevented from being issued, the instructions that are dependent on it, even those outside the
FPIA, will also be stalled, resulting in a potentially large slowdown. To solve this problem,
forwarding of input values into the FUs must be modeled so that execution of each operation
can proceed when its inputs are ready. The second reason is that the reordering of instructions
in several cases results in a penalty that must be incurred on the FPIAs. In these cases, even
though the FPIA outperforms the reordered baseline significantly (such as in lmp.4B.lj.fix in

218 FPIA

F. 6.2. Performance of Sandia Applications Enhanced with FPIAs of Various Sizes

Figure 6.2), the improvement is not enough to compensate for the slowdown due to reorder-
ing. One approach to dealing with this is to develop a better algorithm for FPIA insertion.
Another option is for the extraction tool not to aggregate graphs that will require reordering
that leads to lower performance.

7. Summary and Future Work. This work has explored the potential of floating point
instruction aggregates (FPIA), which seek to lessen the overhead associated with instructions
when executed on a superscalar OoO processor. A parameterized microarchitecture design
for executing FPIAs was presented, along with a process for extracting FPIAs for execution
on this microarchitecture. FPIA content of applications for scientific simulation at Sandia was
analyzed to specify values for the parameters of an effective design. A simulator was con-
structed for estimating the potential performance improvement offered by FPIAs. Although
the performance results were not good for most of the applications, we have produced several
deliverables that will serve as a basis for future studies:

• Baseline algorithm for FPIA extraction.
• Tools for analyzing FPIA content in applications.
• Methodology and simulator for performance evaluation of FPIAs.

There exist numerous avenues for future work with FPIA. Of primary interest is to de-
termine the properties of FPIAs that are beneficial to performance. While the objective of
this work was to determine the properties and potential performance improvement offered by
typical FPIA, the next step is to characterize and evaluate good FPIAs. The realization that a
significant portion of FPIAs actually hurt performance is important. The distinction of which
FPIAs are good and which are bad will direct the exploration process in the future and guide
the design of the toolset and microarchitecture.

Future goals also include production of an improved insertion algorithm, particularly one
that interferes less with the work of the compiler. A refined model of the hardware for more
accurate performance estimates is also important, with focus on these questions:

• How do FPIA components interact with conventional hardware?
• How do we schedule individual operations to the FUs?
• How do we issue FPIAs in parallel?

P. La Fratta, A. Rodrigues and K.D. Underwood 219

The improved model should also implement more efficient feeding of inputs to FPIAs,
so that functional units can begin operations as soon as their inputs are available. Finally,
the memory requirements of FPIAs are of interest. Is memory performance a bottleneck for
FPIAs? Is so, what are effective solutions?

REFERENCES

[1] A. B, P. P,  A. R, Dataflow mini-graphs: Amplifying superscalar capacity and bandwidth, in
MICRO 37: Proceedings of the 37th annual IEEE/ACM International Symposium on Microarchitecture,
Washington, DC, USA, 2004, IEEE Computer Society, pp. 18–29.

[2] A. B  A. R, Serialization-aware mini-graphs: Performance with fewer resources, in MICRO 39:
Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, Washington,
DC, USA, 2006, IEEE Computer Society, pp. 171–184.

[3] R. M. J  M. P, Comparison of single- and dual-pass multiply-add fused floating-point units,
IEEE Trans. Comput., 47 (1998), pp. 927–937.

[4] H.-S. K  J. E. S, An instruction set and microarchitecture for instruction level distributed process-
ing, in ISCA ’02: Proceedings of the 29th annual international symposium on Computer architecture,
Washington, DC, USA, 2002, IEEE Computer Society, pp. 71–81.

[5] I. K  M. H. L, Macro-op scheduling: Relaxing scheduling loop constraints, in MICRO 36: Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture, Washington, DC,
USA, 2003, IEEE Computer Society, p. 277.

[6] A. R, Programming future architectures: Dusty decks, memory walls, and the speed of light. Ph.D.
Dissertation, University of Notre Dame, 2006.

[7] A. R, R. M, P. K,  K. U, Characterizing a new class of threads in scientific
applications for high end supercomputers, in ICS ’04: Proceedings of the 18th annual international con-
ference on Supercomputing, New York, NY, USA, 2004, ACM Press, pp. 164–174.

[8] K. R, A. R, K. U,  K. C, Scientific applications vs. spec-fp: a comparison
of program behavior, in ICS ’06: Proceedings of the 20th annual international conference on Supercom-
puting, New York, NY, USA, 2006, ACM Press, pp. 66–74.

[9] J. J. S, D. V. P, K. G,  O. E, Instruction packing: Toward fast and energy-efficient
instruction scheduling, ACM Trans. Archit. Code Optim., 3 (2006), pp. 156–181.

Appendix A. Detailed Results.

F. A.1. Number of Unique Graphs

220 FPIA

F. A.2. Graph Utilization for Size (applications indexed by order given in Figure A.1).

F. A.3. Graph Utilization for Depth

F. A.4. Graph Utilization for Width

F. A.5. Graph Utilization for Register Inputs

P. La Fratta, A. Rodrigues and K.D. Underwood 221

F. A.6. Graph Utilization for Register Outputs

F. A.7. Graph Utilization for Memory Inputs

F. A.8. Graph Utilization for Memory Outputs

CSRI Summer Proceedings 2007 222

ACCELERATING REED-SOLOMON CODING IN RAID SYSTEMS WITH GPUS

MATTHEW L. CURRY∗, LEE H. WARD†, ANTHONY SKJELLUM‡, AND RON B. BRIGHTWELL§

Abstract. Graphical Processing Units (GPUs) have been applied to many more types of computations than
graphics processing for several years. However, until recently, the hardware has not been capable of doing general
data processing tasks efficiently. With the advent of more general purpose extensions to GPUs, many more types of
computations are now possible than before. One application that we have identified as benefiting from the GPU’s
unique architecture is Reed-Solomon coding in a manner appropriate for RAID-type systems. In this paper, we
show the mapping of the problem to the architecture, implementation concerns, and performance data for such
applications.

1. Introduction. Graphical Processing Units, also known as GPUs, are massively par-
allel devices designed to cope with the embarrassingly parallel nature of graphics render-
ing tasks. Of course, these devices excel at this workload. However, as conventional CPU
speedup has stagnated and manufacturers have begun accelerating applications through sym-
metric multiprocessing on multiple cores, applications developers have been looking toward
the GPU as an already mature and highly developed computation platform with dozens of
cores. The GPU has been successfully applied to applications that are either embarrassingly
parallel or have embarrassingly parallel sub-steps [5, 3].

However, until recently, GPU platforms were restricted in terms of the usable data types.
Generally, only certain floating point operations and data types were well supported. Some
other types could be emulated through the provided types; however, unless used judiciously,
emulation is often an inefficient use of the GPU’s resources [6]. With this restriction, only
applications that heavily utilized floating point data and calculations could be accelerated via
GPU computation.

To solve such problems, and to provide more acceleration for general-purpose GPU
(GPGPU) applications, NVIDIA has released its CUDA API and architecture. While CUDA
allows for some enhanced hardware features to be accessed, including a very useful local
memory, it also allows operations to be performed on arbitrary binary data [7]. This presents
the opportunity for applications to perform more general data processing tasks that are well-
suited to the GPU’s overall architecture, but could not be done well using floating point data
alone.

We have identified Reed-Solomon coding as an application that both suits the general
architecture of GPUs and requires the more general types and operations available through
CUDA. In particular, we believe GPUs would show good performance as part of a RAID-like
system that includes more than two checksum disks. This type of calculation is much more
computationally complex than those that are performed for one or two checksum disks. In
RAID 5, for example, the checksum calculation for byte n can be performed by taking the
exclusive-or of byte n on each data disk. Similarly, for two disks, Blaum et. al. have devised
an algorithm that uses 50% fewer operations than Reed-Solomon coding does for the same
case [2]. However, in the general case, Reed-Solomon coding is the standard method for
generating arbitrary amounts of checksum data [4].

In this paper, we describe a system for performing checksum calculations on disk data in
the manner of a RAID system with more than two checksum disks. In the second section we
give the motivation for systems with more than two checksum disks. In the third section we

∗University of Alabama at Birmingham, curryml@cis.uab.edu
†Sandia National Laboratories, lee@sandia.gov
‡University of Alabama at Birmingham, tony@cis.uab.edu
§Sandia National Laboratories, rbbrigh@sandia.gov

M.L. Curry, L.H. Ward, A. Skjellum, and R.B. Brightwell 223

describe a RAID system that can use a GPU-based checksum component without degrading
performance. In the fourth section we describe Reed-Solomon coding implementations on
CPUs. In the fifth section we describe how Reed-Solomon coding maps to the GPU. In
section six we give the experimental results. In section seven we summarize our findings and
describe future work.

2. Motivation for RAID with Triple-Disk Checksum. RAID arrays have long been a
preferred method of increasing the reliability and speed of secondary storage. There is a broad
mix of standard RAID configurations that offer increased performance, data redundancy, or
both. For example, RAID 5 configurations can recover from a total failure of one disk while
providing increased read and large write performance [4]. RAID 6, which provides the most
redundancy of standard RAID levels, is capable of recovering from two simultaneous disk
failures. Given the statistics provided by drive manufacturers, these allow for an impressive
MTTDL (Mean Time To Data Loss) for a disk array.

However, several researchers have raised concerns about the reliability of disk manufac-
turers’ statistics. Pinheiro et. al. found that the annualized failure rates of their disk drives are
much higher than are implied by vendor statistics [10]. Schroeder and Gibson found similar
results through a survey of drives under multiple administrative domains [12]. These results
imply that RAID reliability cannot be directly calculated from vendors’ statistics, but is more
likely to be lower.

There are rarer, yet more grave, reliability problems including batch-correlated failures.
Batch correlated failures result from a manufacturing defect in a group of drives. Pâris and
Long show that if several disks from a defective batch compose a RAID array, chances are
poor that one can rebuild a failed disk before another disk fails [9]. They also show that
adding checksum disks can drastically increase chances of recovery, but even having only
two checksum disks can be a risky proposition. Given a recovery time of twenty-four hours
and one disk failure per week, a RAID 6 array has less than 70% probability of being able to
recover from a disk failure before data loss occurs.

One final issue is double disk failures combined with read errors. Disk drives are ap-
proximately doubling in capacity every eighteen months, but disk speeds are not increasing
that quickly. Therefore, the time required to rebuild an array is increasing, causing a related
increase in the probability of a double disk failure. If all redundancy in the array is removed,
there is no protection in the case of a read error from any of the remaining disks; if such an er-
ror occurs on one drive, the corresponding data on the other drives is useless, and data is lost.
Given the Bit Error Rate (BER) statistics given by drive manufacturers, the probability that a
large drive will encounter an unrecoverable read error during the course of reconstruction is
too large to ignore.

The authors believe that the most sensible option is to add another disk of checksum
information to a RAID array, allowing it to withstand up to three disk failures (total or par-
tial). This is not a commonly implemented solution due to the computational expense over
generating checksums for only one or two disks. However, we believe we can utilize the com-
putational power of GPUs as part of a RAID system, allowing three checksum disks while
not degrading performance.

3. A GPU-based RAID System. In order to create a viable RAID system using GPUs,
it is important to address the issue of memory transfers. The GPUs that are typically utilized
for computation are outboard devices which operate on their own local memories. Any data
that the GPU uses for computation must, at present, be explicitly transferred over the PCI
Express bus. In order to keep the disks from falling idle, causing a drop in overall throughput,
the system should be able to feed data to disks as quickly as the disks can accommodate.

224 GPU RAID

F. 3.1. RAID System Architecture

One method of doing so is to create a pipelined architecture, as illustrated in Figure 3.1.
In this system, we have three buffers: The “in-buffer,” where incoming user write requests are
stored; the “pending-buffer,” which acts as the main memory buffer for data being processed
by the GPU; and the “out-buffer,” which holds the data and checksum information that is
ready to be written to the disks.

As data continually fills what is designated as the in-buffer, these buffers are rotated as
both the GPU and hard disks finish with their workloads. This allows the throughput of the
system to remain high at the cost of increased latency. Fortunately, in this usage scenario, the
user will not notice that her data has not yet been written to disk; in fact, the user may notice
that each individual write may complete sooner than expected.

A successful system would show one important characteristic: Given a nearly constant
rate of writes, the GPU stage of the pipeline should finish before the disk stage finishes. This
would imply that the disks are being utilized to their full abilities, and there would be no
throughput decrease due to the computation of the checksums.

4. Reed-Solomon Coding on CPUs. In generating arbitrary amounts of redundant data,
the primary operation is multiplying part of an information dispersal matrix with a vector of
input data elements, yielding another vector of redundant elements satisfying our conditions
for RAID checksums. However, rather than relying on integer or floating point arithmetic,
the operations are performed on members of a finite field. Addition of two numbers is im-
plemented through an exclusive-or operation, while multiplication by two is implemented
through a linear shift feedback register (LSFR). Multiplying two arbitrary numbers involves
decomposing the problem into addition of products involving powers of two, which poten-
tially requires a large number of operations. One useful identity which holds true in finite
fields of size 2n is:

x ∗ y = ilog(log(x) + log(y))

where the addition operator denotes normal integer addition modulo 2n − 1. Since n = 8
for RAID systems, an implementation can contain precalculated tables for the log and ilog
tables, which are 256 bytes apiece. Now, multiplications only require three tables and addition
modulo 2n − 1 instead of potentially many more logical operations. (While we have given
enough of the specifics to continue with discussion, a more in-depth treatment of checksum
generation using Reed-Solomon coding is available [11].)

M.L. Curry, L.H. Ward, A. Skjellum, and R.B. Brightwell 225

Unfortunately, the type of table lookup operations used in Reed Solomon coding does
not exploit the internal vector-based parallelism of CPUs. While fast vector instructions have
been included in modern CPUs, few CPU models include a parallel table lookup instruction.
In the case of IBM’s Power architecture, whose Altivec instruction set includes a parallel table
lookup instruction, multiplication in finite fields has been accelerated over typical CPU im-
plementations [1]. Unfortunately, this capability is not common, and CPU implementations
tend to suffer due to this lack of capability.

5. Reed-Solomon Coding on GPUs. GPUs are architecturally quite different from
CPUs. The emphasis of the GPU architecture is to accomplish tens of millions of small,
independent, and memory intensive computations per second in order to provide interactive
graphics to the user. As such, the GPU has several interesting qualities which are directly
applicable to the task of Reed-Solomon coding.

One of the more well-known features of a GPU is its vast number of multithreaded pro-
cessors. The NVIDIA G80, for example, has been identified by NVIDIA as containing 128
processors. These processors are designed to be effective for small threads of execution on
the order of a dozen instructions. In the context of checksum generation, each set of bytes
in the data stream (i.e., byte n of each data disk) can be viewed as an independent computa-
tion. The threading implementation allows for hiding of memory access latency if the ratio
of instructions to memory accesses is high, so it is beneficial to pack as many bytes per mem-
ory request as possible. In our implementation on the G80, each processor is responsible for
sixteen bytes per disk; this is due to the 128-bit memory bus.

Another popular feature of the GPU is its high streaming bandwidth. In our test machine
(which will be fully described in our results section), the NVIDIA supplied bandwidth test
measures bandwidth between the local and global memory to be over seventy gigabytes per
second. In comparison, AMD gives the streaming bandwidth of their Opteron processor to
be five gigabytes per second [8]. The checksum computation is streaming in nature; although
it is efficient to keep the checksum-in-progress in local memory throughout the computation,
the data disk’s bytes can be streamed through the GPU one set at a time. The GPU’s memory
characteristics are more suitable for this type of use.

As an architecture that deals primarily in accessing textures for mapping onto polygons,
fast constant accesses are important to good graphics performance. Unlike other types of
memory within the CUDA architecture, constant memory is immutable. Therefore, in order to
increase performance of constant memory accesses, each processor group’s constant accesses
are cached. Once data is in this cache, accesses to this data can be as fast as a register access.
With this in mind, we have already mentioned a detail of the Reed-Solomon coding algorithm
that can make liberal use of this hardware feature: The log and ilog tables. Each table used
in checksum calculations is 256 bytes, while each processor group’s constant cache is on the
order of many kilobytes.

6. Results. We have implemented the GPU and disk components of the system outlined
in Figure 3.1. The experiments we have performed are based on the idea that these compo-
nents will be a part of a full RAID system with three data disks and three checksum disks. As
such, the unit of work is phrased as amount of data per disk. The experiment timings include
the full “round trip” for the data, in that time begins when data is in main memory of the
machine and ends when the computed results finish transferring back to main memory. There
is no such transfer overhead to be measured in the CPU case.

The test machine for both the disk and GPU components is as follows: The CPU is an
Intel Core 2 Quad 6600. It has four gigabytes of RAM. The disks used are Western Digital
Raptor 10,000 RPM SATA hard disks. The GPU is a NVIDIA GeForce 8800 Ultra with 768
MB RAM. The CPU tests were performed on an AMD Opteron 246 processor.

226 GPU RAID

6.1. Experiment 1: CPU vs. GPU. For this experiment, we chose James Plank’s gflib
routines to generate checksums, which uses the same style algorithm as our GPU implemen-
tation. While these routines do perform disk I/O, we only timed the checksum generation
time of the program. Each program is taking as input three sets of input data, whose individ-
ual sizes are indicated on the horizontal axis. Output is three sets of checksums suitable for
use in a RAID system that can lose up to three disks.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

Size Per Disk (KB)

CPU
GPU

F. 6.1. CPU Checksum Generation vs. GPU Checksum Generation

As Figure 6.1 indicates, the GPU is much faster than the CPU for all but the smallest
payloads. Eventually, for large payloads, the GPU is able to obtain a nine-fold speedup over
the CPU.

6.2. Experiment 2: GPU vs. RAID 0. This experiment compares the GPU with a
three-disk RAID 0 system composed of some of the aforementioned 10,000 RPM SATA
disks. It simulates the pipelined system as illustrated in Figure 3.1, allowing us to test our
goal of whether the GPU stage of the system pipeline can outperform the disk stage of our
pipeline for this case.

The experiment was constructed as follows: For each write size of n kilobytes, many
writes of size 3 ∗ n kilobytes were generated. This would allow for each data disk to receive n
kilobytes each. Depending on the operating mode, these writes were sequentially arranged to
allow streaming writes, or the writes were randomly located throughout the disk. The same
process was repeated for the GPU, except the idea of a streaming write or random write has
no bearing on the GPU’s performance, due to the data being prepacked into the buffer.

Referring to Figure 6.2, we see the type of performance we expected. Random write
throughput on the disks are much lower than either the GPU’s throughput or streaming write
throughput. When comparing the streaming write throughput to the GPU throughput, we
notice that they exhibit similar performance for small writes. However, the aggregate peak
throughput of the disks is much lower than that of the GPU. For large writes, the GPU out-

M.L. Curry, L.H. Ward, A. Skjellum, and R.B. Brightwell 227

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
B

/s
)

Size Per Disk (KB)

GPU
RAID0 (streaming)

RAID0 (random)

F. 6.2. RAID 0 vs. GPU Checksum Generation

performs the disks by nearly a factor of two.

7. Conclusion. In this paper, we have outlined a GPU-based system for generating re-
dundant information for error recovery in a RAID system that can lose more than two disks.
We have benchmarked the system against a CPU implementation, showing a performance
improvement of up to nine-fold in some cases. We also benchmarked the throughput of the
GPU-based system against a RAID 0 configuration of disks, showing that the GPU system
would not be a bottleneck in a system involving six disks, three of which contain redundant
data.

In the future, we hope to integrate this into a true RAID system with more data disks. We
also plan to outline the performance changes as GPU architectures and interconnects evolve.
One interesting possible event is the combining of the GPU and the CPU, which has long been
rumored in the industry and has been further fueled by the ATI acquisition by AMD. Such a
development would have large implications on a system like this due to the high percentage
of time spent transferring data between the GPU and main memory.

REFERENCES

[1] R. B, P. K. D, V. K,  A. R, Efficient Galois field arithmetic on SIMD architectures, in
SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and architectures,
New York, NY, USA, 2003, ACM Press, pp. 256–257.

[2] M. B, J. B, J. B,  J. M, EVENODD: an optimal scheme for tolerating double disk
failures in RAID architectures, in Proceedings the 21st Annual International Symposium on Computer
Architecture, 1994, pp. 245–254.

[3] N. A. C, J. H, K. C,  J. C. H, Fast GPU ray tracing of dynamic meshes using geom-
etry images, in GI ’06: Proceedings of Graphics Interface 2006, Toronto, Ont., Canada, Canada, 2006,
Canadian Information Processing Society, pp. 203–209.

228 GPU RAID

[4] P. M. C, E. K. L, G. A. G, R. H. K,  D. A. P, RAID: High-performance, reliable
secondary storage, ACM Computing Surveys, 26 (1994), pp. 145–185.

[5] N. G, N. K. G, M. H,  D. M, LU-GPU: Efficient algorithms for solving
dense linear systems on graphics hardware, in SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, 2005, IEEE Computer Society, p. 3.

[6] D. G̈, R. S,  S. T, Accelerating double precision FEM simulations with GPUs, in Pro-
ceedings of the 18th Symposium on Simulation Technique (ASIM 2005), F. Hülsemann, M. Kowarschik,
and U. Rüde, eds., SCS Publishing House e.V, Sept. 2005, pp. 139–144.

[7] NVIDIA, NVIDIA CUDA compute unified device architecture programming guide, 2007.
[8] D. O’F M. G, AMD Opteron processor benchmarking for clustered systems, 2003.
[9] J.-F. P̂  D. D. E. L, Using device diversity to protect data against batch-correlated disk failures,

in StorageSS ’06: Proceedings of the second ACM workshop on Storage security and survivability, New
York, NY, USA, 2006, ACM Press, pp. 47–52.

[10] E. P, W.-D. W,  L. A. B, Failure trends in a large disk drive population, in FAST’07:
Proceedings of the 5th conference on USENIX Conference on File and Storage Technologies, Berkeley,
CA, USA, 2007, USENIX Association, pp. 2–2.

[11] J. S. P, A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems, Software – Practice
& Experience, 27 (1997), pp. 995–1012.

[12] B. S  G. A. G, Disk failures in the real world: what does an MTTF of 1,000,000 hours mean
to you?, in FAST’07: Proceedings of the 5th conference on USENIX Conference on File and Storage
Technologies, Berkeley, CA, USA, 2007, USENIX Association, pp. 1–1.

M.L. Parks and S.S. Collis 229

Applications

Necessity is the mother of invention and, ultimately, applications drive the advances in
computational science, mathematics, and algorithms. The papers in this section span several
disciplines, and utilize advanced mathematical and computational tools to address specific
problems and applications in their respective fields. In particular, each paper utilizes and ex-
tends the capabilities of one or more production Sandia codes, including Trilinos (multipack-
age software framework for large-scale scientific problems), LAMMPS (massively parallel
molecular dynamics), Sacado (automatic differentiation), ALEGRA (magnetohydrodynamics
code), Intrepid (compatible discretization library), Tramonto (molecular density functional
theory), Sundance (rapid development environment for parallel finite element methods), and
LOCA (library of continuation methods).

Schiemenz and Robinson present a new method for calculating the Lorentz force in ALE-
GRA magnetohydrodynamics modeling. They show that deriving the forces directly from a
magnetic energy functional has distinct advantages in terms of discrete energy conservation.
Their method utilizes the Intrepid compatible discretization package and the Sacado auto-
matic differentiation package, both within the Trilinos framework. Oguntade and Plimpton
studied the effects of shape on the behavior of colloidal suspensions utilizing recent addi-
tions to the LAMMPS molecular dynamics package. The effect of shape on the rheology
of suspensions is a largely unexplored area of colloidal research. Specifically, the rotational
and translational diffusivities of aspherical particles in solvents were measured. Knepper
and Heroux consider Schur complement techniques to reduce the run-time and memory re-
quirements for solution of equations arising from the use of density functional theories for
inhomogeneous fluids. They and also consider how the addition of Coulomb effects changes
the problem structure for the Schur complement approach. Fettig and Collis developed a
parallel simulation tool for modeling microvascular self-healing flows using Sundance. They
simulate and analyze the flow of a solidifying fluid in a crack as it would occur in proposed
self-healing composites. In particular, their simulator is capable of modeling free surface
flows, dynamic contact lines, and polymerizing flow in small scales. Dickson et al. consider
a recently proposed theory describing structural and thermodynamic properties of atomic and
molecular fluids. They reformulate the new theory into a form conducive to performing a con-
tinuation study in density for atomic fluids, and present continuation results for atomic fluids
using the Trilinos software package LOCA. Chowdhary and Robinson discuss the derivation
and implementation of a fast and accurate method for the evaluation of the magnetic vector
potential associated with a circular loop current source field. They have implemented this
method in the ALEGRA code to allow for 2D and 3D circular loop source fields for magnetic
diffusion simulations.

M.L. Parks
S.S. Collis

December 6, 2070

230 CSRI Summer Proceedings 2007

CSRI Summer Proceedings 2007 231

ENERGY BASED MAGNETIC FORCE COMPUTATION
USING AUTOMATIC DIFFERENTIATION

ALAN R. SCHIEMENZ∗ AND ALLEN C. ROBINSON†

Abstract. A new method for magnetic energy force discretization for ALEGRA magnetohydrodynamics mod-
eling is considered. The method combines the automatic differentiation technology from the Trilinos Sacado project
with the Intrepid compatible discretization library to compute the magnetic forces. Deriving the forces directly from
a magnetic energy functional is shown to have distinct advantages in terms of discrete energy conservation properties.
Reducing the cost of this computation remains a challenge.

1. Introduction. Arbitrary Lagrangian-Eulerian (ALE) modeling is an important
methodology for computing interaction of materials at high stresses and energies. Lagrangian
modeling implies that the mesh description and representation moves with the underlying
material. Mass, momentum and energy conservation are modeled in a Lagrangian frame of
reference. Lagrangian analysis may be useful for following material motion with a carefully
designed mesh to track desired features. However, in many cases the material motion will
eventually cause meshes to tangle and the mesh must be smoothed and straightened and the
variables remapped. If the new mesh is exactly the same as the old mesh then this is the so-
called Eulerian limit for an ALE code. When the physics of the problem involves high current
and magnetic fields then we must add a reduced form of Maxwell’s equations that includes
Faraday’s law in moving media and Ampere’s law in which the displacement current has been
neglected. The resulting combined equations are known under the general title of magneto-
hydrodynamics (MHD). Energy can be exchanged between the magnetic field and material
kinetic energy through the Lorentz or J × B forces. If the material has an infinite conductiv-
ity then magnetic flux through a moving surface is invariant and energy is exchanged directly
between the magnetic field and the material kinetic energy. Finite conductivity will result in
an update to the magnetic flux through a magnetic diffusion equation which dissipates energy
through Joule heating. An important example of the need for MHD modeling is with the Z-
machine at Sandia National Laboratories. MHD modeling is used to design record breaking
magnetically driven quasi-isentropic flyers for equation of state experiments and to study the
physics of wire-array implosions [4]. Key to predictive results with these computations is to
properly account for the energy in the problem and to ensure that the actual physical parti-
tioning of energy between magnetic, kinetic and internal energy is correctly modeled. Thus,
discrete measures of the energy are important and each aspect of the numerical modeling
methodology needs to be examined for its effect on the partitioning. ALEGRA is an MHD
ALE code developed at Sandia National Laboratories that is used to analyze these high en-
ergy physical systems [7]. We discuss in this paper a method for computing the Lorentz force
in ALEGRA which is consistent with the discrete form of the energy used for the magnetic
diffusion.

2. Ideal Magnetohydrodynamics. The ALE sequence for modeling MHD in ALE-
GRA in both 3D and 2D planar fields consists of an operator split in the Lagrangian motion
between an ideal MHD step and a magnetic diffusion step. First, an ideal MHD step is
performed in which nodal forces and accelerations are computed and nodes are moved ac-
cordingly while holding magnetic fluxes or magnetic vector potential circulations invariant.
Secondly, an implicit magnetic diffusion step may occur, utilizing the eddy current approxi-
mation to Maxwell’s equations. Finally, an optional remeshing and remapping step may be

∗Brown University, ars@dam.brown.edu
†Sandia National Laboratories, acrobin@sandia.gov

232 Energy Based Magnetic Force Computation using Automatic Differentiation

taken. The details of this remesh/remap step are beyond the scope of this paper and we are
concerned primarily with the force description in the ideal MHD step.

Of particular interest is the first of these steps, where nodal forces are calculated. One
way of accomplishing this is to approximate J × B in some way and from this compute the
electromagnetic force at the nodes. Alternatively, one can utilize the Maxwell stress tensor to
compute the Lorentz force,

J × B = ∇ · TM − B(∇ · B) (2.1)
= ∇ · TM (2.2)

since ∇ · B = 0. The components of TM are given as

TM =
1
µ

(
B ⊗ B −

1
2

B2I
)
, (2.3)

or in component form,

TM
i j =

1
µ

(
BiB j −

1
2
δi jBkBk

)
. (2.4)

In ALEGRA the magnetic stress tensor is approximated by evaluating TM at element centers.
This stress can then be fed to the finite element divergence operator to compute the nodal
force. There is no built-in mechanism, however, in this approach to enforce any particular
discrete correspondence between the forces and the magnetic energy change. We expect
consistency only to within truncation errors. We propose an alternative approach that utilizes
what is known about the physics of the problem and will help maintain a discrete energy
conservation principle which is exact in the limit of small differential motions. This idea has
been utilized previously for MHD code development and may be referred to as the principle
of virtual work [6]. We derive below why the principle of virtual work is useful and how it
can be derived from the continuum equations. The books by Eringen and Maugin and Moreau
are useful references for the mathematics of electrodynamics and MHD [2, 5].

Ideal MHD adds the magnetic induction equation to the mass momentum and energy
conservation equation. In integral form the induction equation appears as

d
dt

∫
S t

B · ndA +
∫
δS t

E′ · ds = 0 (2.5)

where S t is any moving surface and E′ is the co-moving electric field integrated around the
boundary of the surface. The surface is a material surface so that taking the time derivative
inside the integral and insisting that this equation hold for all surfaces results in

∂B
∂t
+ ∇ × (B × v) + v(∇ · B) + ∇ × E′ = 0. (2.6)

Since we require the condition ∇ · B = 0 we have the familiar relation

∂B
∂t
+ ∇ × E = 0 (2.7)

where

E = E′ + B × v. (2.8)

A.R. Schiemenz and A.C. Robinson 233

Note that this is the familiar relationship for Ohm’s law in the laboratory frame of reference,

J = σE′ = σ(E + v × B). (2.9)

For ideal MHD, E′ = 0, so that the induction equation becomes

∂B
∂t
+ ∇ × (B × v) = 0. (2.10)

By multiplying this equation by the magnetic field H = B/µ and integrating over a moving
volume we obtain the electromagnetic power integral as follows:

∂

∂t
B2

2µ
+

B
µ
· ∇ × (B × v) = 0 (2.11)

∂

∂t

(
B2

2µ

)
+ ∇ · (

B2

2µ
· v) + ∇ · ((B × v) ×H −

B2

2µ
· v) + (B × v) · J = 0 (2.12)

∂

∂t

(
B2

2µ

)
+ ∇ · (

B2

2µ
· v) − ∇ · (TM · v) + (B × v) · J = 0 (2.13)

d
dt

∫
Vt

B2

2µ
dV = −

∫
Vt

(J × B) · v dV +
∫
δVt

TMn · v dA (2.14)

Note that J = ∇ × H from the reduced form of Faraday’s law. Similarly, there is a power
expended theorem for the momentum equation [3]

d
dt

∫
Vt

v2

2
ρ dV =

∫
Vt

(J × B) · v dV +
∫

Vt

T · D dV +
∫
δVt

Tn · v dA (2.15)

where D is the symmetric part of the velocity gradient tensor and T is the thermodynamic
Cauchy stress. Therefore if we add these two last equations we obtain

d
dt

∫
Vt

(
B2

2µ
+ ρ

v2

2

)
dV =

∫
δVt

TMn · v dA +
∫

Vt

T · D dV +
∫
δVt

Tn · v dA (2.16)

which indicates that the sum of material derivative of the kinetic and magnetic energy in a
moving volume is independent of the magnetic force power

∫
Vt

(J×B) · v dV . Fundamentally
this means that there is a direct exchange between the magnetic and kinetic energy in ideal
MHD which must hold independently of any thermodynamic stresses. It is this principle that
allows us to compute a formula for the relationship of the change in magnetic energy to a
material force.

Consider a Lagrangian finite element with coordinates {xk}
N
k=1, where xk = (xk, yk, zk). A

hexahedron, for example, is defined by its N = 8 vertices, yielding 8 × 3 = 24 coordinates.
For zero thermodynamic stress and boundary velocity, energy conservation implies

d
dt

∫
Vt

(
B2

2µ
+ ρ

v2

2

)
dV = 0 (2.17)

or

d
dt

[EK + EM] = 0 (2.18)

234 Energy Based Magnetic Force Computation using Automatic Differentiation

where EK refers to the kinetic energy and EM refers to the magnetic (potential) energy. For a
Lagrangian model the mass on a node is invariant and for ideal MHD the flux through a face
is constant as in equation 2.5. Therefore,

d
dt

∑
k

{
1
2

mv2
xk
+

1
2

mv2
yk
+

1
2

mv2
zk
+

}
+ EM(x1, ..., xN ,Φ)

 = 0 (2.19)

where m refers to mass and vxk , vyk , vzk refers to velocities in the xk,yk and zk directions, re-
spectively, and Φ is a representation of the magnetic flux degrees of freedom on each face.
Applying the chain rule we have

∑
k

(
mvxk axk +

∂EM

∂xk
vxk

)
= 0∑

k

(
mvyk ayk +

∂EM

∂yk
vyk

)
= 0∑

k

(
mvzk azk +

∂EM

∂zk
vzk

)
= 0

(2.20)

where ak = (axk , ayk , azk) are the accelerations in each direction. To enforce these equations
we require each relationship hold for arbitrary velocity, yielding

Fk +
∂EM

∂xk
= 0 ∀k (2.21)

where Fk = (Fxk , Fyk , Fzk) = mak is the desired nodal force. Therefore we have

Fk = −
∂EM

∂xk
(2.22)

=
∂

∂xk

(
−

1
2µ

∫
B · Bdx

)
. (2.23)

Thus, differentiating the magnetic energy functional with respect to coordinates will give a
computation of nodal force which exactly matches the physics of the problem.

Unlike the method in which the Maxwell stress tensor TM is evaluated at cell centers and
then differenced via the finite element divergence operator to obtain forces at the nodes, this
method will calculate the force in a way that is consistent with the underlying physics and
will lead to an exact correspondence between the change in magnetic and kinetic energy with
respect to infinitesimal perturbations. However, to do this there are two important factors
that must be considered. First, we must be able to exactly compute the magnetic energy in
a discrete sense. As seen in equation (2.23), this can be viewed as a functional of the B-
field. Second, we must exactly compute the derivative of this functional with respect to the
coordinates.

The first of these requirements is carried out by the on-going Sandia Intrepid project, a
templated compatible discretization technology. The second is provided by Sandia’s Trili-
nos Sacado project, a C++ automatic differentiation library. Due to Intrepid’s use of C++
templated data types, the two projects are easily combined to provide an effective means
of differentiating the energy functional with respect to element coordinates. This paper ex-
amines the utility of this approach for managing the energy exchange between the discrete
magnetic and discrete kinetic energy. The discrete magnetic energy functional that we have in
mind is exactly the same functional that is used in the finite element solution of the magnetic

A.R. Schiemenz and A.C. Robinson 235

diffusion or eddy current equation when E′ is non-zero. This functional will depend the finite
element solution methodology and in particular will depend on the finite element quadrature
rule.

3. Compatible Spatial Discretizations. In our three-dimensional ideal MHD setting
we have invariant magnetic fluxes (or magnetic potential circulations) throughout the La-
grangian step. That is, the degrees of freedom we work with are fluxes

Φi =

∫
Fi

B · da, (3.1)

where Fi denotes face i of an element K. Accordingly, we can express the magnetic flux
density as

B =
∑

i

ΦiWi(x) (3.2)

given a corresponding set of (vector) basis functions {Wi}.
These basis functions induce a bilinear form corresponding to a mass matrix M, given as

Mi j =

∫
K

Wi ·W jdx. (3.3)

The particulars of how to compute this mass matrix, e.g. exactly how the bilinear form is
evaluated, are handled in Intrepid and are not of concern from the ALEGRA application point
of view. In particular, it is not even required that the underlying bilinear form implementation
be finite element based. Given this mass matrix, we may now compute the magnetic energy
functional:

E =
1

2µ

∫
K

B · Bdx (3.4)

=
1

2µ

∫
K

∑
i

ΦiWi

 ·
∑

j

Φ jW j

 dx (3.5)

=
1

2µ

∑
i, j

Φi

(∫
K

Mi jdx
)
Φ j (3.6)

=
1

2µ
ΦT MΦ. (3.7)

Recalling equation (2.22), computation of nodal force contributions now requires evalu-
ating the derivative of this functional with respect to the coordinates xk. As the fluxes Φ are
invariant in the Lagrangian step, only the matrix M requires differentiation

Fk = −
∂E
∂xk
= −

1
2µ
ΦT

(
∂M
∂xk

)
Φ. (3.8)

Because a single node may be shared by multiple elements, the total force on a node is the
sum of the contributions from each element.

3.1. Two-dimensional implementation. A similar approach may be followed for two-
dimensional problems, with some slight modifications. In three dimensions, the motivation
for representing B in terms of the magnetic flux degrees of freedom as in equation (3.2) came

236 Energy Based Magnetic Force Computation using Automatic Differentiation

from the fact that these fluxes remained constant under Lagrangian motion in the ideal MHD
step. It is equivalent to require that the vector potential circulations on element edges remain
invariant. In ALEGRA the degrees of freedom for planar two-dimensional problems with
field in the plane, however, are the out-of-plane magnetic vector potential components. These
components are invariant under Lagrangian motion in ideal MHD.

Consider the curl as an operator that acts on vector fields normal to the plane,

A(x, y) = γ(x, y)k. (3.9)

Then, the curl operator will map scalar functions γ into the (i, j) plane

∇ × A = i
∂γ

∂y
− j

∂γ

∂x
. (3.10)

The invariant degrees of freedom γl = γ(xl, yl) are the values of the (scalar) potential at the
vertices of the element

A(x, y) =
∑

l

γlWl(x, y)k, (3.11)

where now the basis functions {Wl} are scalar-valued. The magnetic energy functional on an
element K is then computed as

E =
1

2µ

∫
K

(∇ × A) · (∇ × A) dx (3.12)

=
1

2µ

∫
K

∑
k

γk

(
i
∂Wk

∂y
− j

∂Wk

∂x

) · ∑
l

γl

(
i
∂Wl

∂y
− j

∂Wl

∂x

) dx (3.13)

=
1

2µ

∑
k,l

γk

(∫
K

∂Wk

∂x
∂Wl

∂x
+
∂Wk

∂y
∂Wl

∂y
dx

)
γl (3.14)

=
1

2µ
ΓT SΓ (3.15)

where the entries of the stiffness matrix S are defined as

S i j =

∫
K
∇Wi · ∇W jdx. (3.16)

Finally, as Γ remains constant in the ideal MHD step, the nodal force contribution is

Fk = −
∂E
∂xk
= −

1
2µ
ΓT

(
∂S
∂xk

)
Γ. (3.17)

4. Automatic Differentiation. The Intrepid project gives the needed machinery to com-
pute the magnetic energy functional, but we must differentiate this functional with respect to
the element coordinates to evaluate the nodal force contributions. For hexahedral grids this
differentiation is a non-trivial calculation due to the Jacobian factors in the integrals defining
the entries of M and S. These factors arise in the nonlinear transformation between phys-
ical and reference space [1]. We automate the evaluation of these derivatives by utilizing
automatic differentiation technology from the Sandia National Laboratories Trilinos Sacado
project.

The premise of automatic differentiation is to break down all complicated functions into
compositions of elementary functions which can be easily evaluated and differentiated. Then,

A.R. Schiemenz and A.C. Robinson 237

T 4.1
Example of automatic differentiation for the evaluation of the function z(x, y) = x2 sin(ex + log y) at the point

(x, y) = (1, 2)

(·)
[
∂
∂x (·), ∂

∂y (·)
]

returned values
t1 = ex [ex, 0] 2.718 [2.718 0.000]
t2 = log y

[
0, 1

y

]
0.693 [0.000 0.500]

t3 = sin (t1 + t2)
[
cos(t1 + t2)(

∂t1
∂x +

∂t2
∂x), cos(t1 + t2)(

∂t1
∂y +

∂t2
∂y)

]
-0.267 [-2.620 -0.482]

t4 = x2 [2x, 0] 1.000 [2.000 0.000]
z = t3t4

[
∂t3
∂x t4 + ∂t4

∂x t3,
∂t3
∂y t4 + ∂t4

∂y t3
]

-0.267 [-3.153 -0.482]

by systematically applying rules of differentiation to these subproblems, the analytic deriva-
tives of a very complicated function can be automatically computed.

Implementation-wise, Sacado creates new data types that overload elementary opera-
tions, returning derivative evaluations as well as performing the requested operation. For
example, when requesting the product of the functions of two variables f (x, y) and g(x, y) the
multiplication operator * will return the values

f ∗ g =

 f g
fxg + f gx

fyg + f gy

 , (4.1)

where the first entry corresponds to usual scalar multiplication. This structure can also be
visualized as the pairing of a scalar value and gradient vector corresponding to the function
evaluation and its gradient with respect to the user-specified variables, respectively.

f ∗ g =
{
f g,

[
fxg + f gx, fyg + f gy

]}
(4.2)

Table 4.1 illustrates the evaluation of the function z(x, y) = x2 sin(ex + log y) at the point
(x, y) = (1, 2).

Compared to other methods of symbolic and numerical differentiation, Sacado’s auto-
matic differentiation technology offers to the developer the convenience of evaluating analytic
derivatives of complicated expressions without themselves having to expend a great time in
coding and verification. In 3-D MHD modeling on hexahedral grids this is extremely helpful,
as each entry in the local mass and stiffness matrix is a nonlinear function of the 24 coordi-
nate values which define the vertices of the element. In this case, we utilize Intrepid’s C++
templated data types and declare the matrix entries (see equation 3.3) to be of Sacado’s FAD
(forward automatic differentiation) type. As will be shown in section 5, however, evaluating
these derivatives comes at a high cost.

5. Results. In the following we consider two ideal MHD problems, i.e., ones with no
resistive magnetic diffusion step, that also have a negligible thermal pressure (very low beta
plasma).

5.1. Two-dimensional example. Given the magnetic potential

A(x, y) = x2y2k, (5.1)

consider the domain Ω = [0, 1]× [0, 1] tessellated into an initially uniform mesh consisting of
K2 squares, where the values K = 4, 8, 16 are chosen. In Figure 5.1 the percent energy change
(as measured from the initial energy) is plotted as a function of time for the magnetic stress

238 Energy Based Magnetic Force Computation using Automatic Differentiation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10−3

−1

0

1

2

3

4

5

6

time

%
 E

ne
rg

y
ch

an
ge

EFUNC − 4
TENSOR − 4
TENSOR − 8
TENSOR − 16

F. 5.1. 2D example: change in total energy vs. time. Mesh sizes of 42, 82 and 162 elements are chosen.

tensor (“TENSOR”) and the new energy-based (“EFUNC”) force options. The TENSOR
option exhibits a growing change in total energy. Under mesh refinement this energy change
decreases. The EFUNC option, however, has a relatively constant total energy with less than
a 0.1% gain for all time steps.

It is reasonable to expect this small energy fluctuation, since even though the computed
Lorentz force is compatible with the discrete energy state of the system at any values of the
coordinates, the magnetic energy is a non-linear function of the coordinates. The coordinates
x of an element are updated using a discrete time integration rule using the accelerations
given by the energy at a given state. These B-fluxes and scalar potential values for three-
and two-dimensional problems, respectively, remain invariant in the Lagrangian motion so at
time step tn we may write

x(Φ, tn) ≡ xn.

The magnetic energy at the next time step tn+1 can be expanded in a Taylor series as

EM(xn+1) =
∞∑
j=0

[
1
j!

((
xn+1 − xn

)
· ∇x

) j
EM(x)

]
x=xn

(5.2)

The first few terms of this series are

EM(xn+1) = EM(xn) + h ·
∂EM

∂x

∣∣∣∣∣
x=xn
+ O(|h|2), (5.3)

where h = xn+1−xn measures the mesh displacement. Essentially at each integration step, we
are neglecting the higher order terms in the expansion leading to small differences between
the magnetic energy and the incremented kinetic energy. These asymptotically reduce to zero
under time-step refinement, as is seen in Figure 5.2.

A.R. Schiemenz and A.C. Robinson 239

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10−3

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

time

%
 E

ne
rg

y
ch

an
ge

dt
dt/2
dt/4

F. 5.2. EFUNC time-step refinement: change in total energy vs time for three different time-step discretiza-
tions. A standard time step dt is chosen for one case and compared to the same problem run with twice and four
times as many time steps. The same 2-D problem as in Figure 5.1 is chosen with a 16-element mesh.

5.2. Three-dimensional example. Given the magnetic potential

A(x, y, z) = sin2(xyz)i + cos2(xyz)j + tan2(xyz)k, (5.4)

consider the domain Ω = [0, 1] × [0, 1] × [0, 1] tessellated into an initially uniform mesh
consisting of 512 hexahedra. In Figure 5.3 the percent energy change (as measured from
the initial energy) is plotted as a function of time for the TENSOR, EFUNC and PJXPBPV
options. The latter force option is computed from the projected J and B quantities. Again as
in the two-dimensional case we see the force options increasing in total energy while the new
magnetic energy functional option has a relatively negligible change in the total energy.

5.3. Expense. Results displaying much improved energy conservation for the new
EFUNC force option are promising, but come with the drawback of a much greater com-
putational expense. This can be observed by comparing the CPU time for each option. In
Table 5.1 is shown the CPU time spent evaluating the Lorentz force for a two-dimensional
problem containing 2000 time steps and a three-dimensional problem containing 350 time
steps. All problems assume ideal MHD.

From Table 5.1 we observe a slowdown factor of around 100 in two dimensions and
500 in three dimensions. This cost can be attributed to the fact that with purely Lagrangian
motion we must recompute each local mass (or stiffness) matrix and its derivatives for each
time step. These numbers make some sense for quadrilaterals because in 2D there are 4
quadrature points in the energy functional, 8 coordinates per element and 3 floating point
operations for every multiply in the energy evaluation. This gives a rough cost factor of 96.
For hexes a similar computation yields 8 ∗ 24 ∗ 3 = 576.

At first glance, the cost of the energy-based magnetic force computation is prohibitively
high. However, there is room for improvement in the Intrepid and Sacado libraries interface.
The symmetry of the mass and stiffness matrices could be utilized and more efficient com-
putations seem to be possible by utilizing specialized code which takes advantage of quad

240 Energy Based Magnetic Force Computation using Automatic Differentiation

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x 10−4

−1

0

1

2

3

4

5

6

7

8

time

%
 E

ne
rg

y
ch

an
ge

EFUNC
PJXPBPV
TENSOR

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x 10−4

−1

0

1

2

3

4

5

6

7

8

time

%
 E

ne
rg

y
ch

an
ge

EFUNC
PJXPBPV
TENSOR

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x 10−4

−1

0

1

2

3

4

5

6

7

8

time

%
 E

ne
rg

y
ch

an
ge

EFUNC
PJXPBPV
TENSOR

F. 5.3. 3D example: change in total energy vs. time. A 512-element mesh is chosen for all three cases.

T 5.1
Expense comparison: real-time costs in evaluating the Lorentz force for a two-dimensional problem of 2000

time steps and a three-dimensional problem of 350 time steps. The new EFUNC option is much more costly than the
TENSOR option.

2-D problem 3-D problem
Elements CPU time (s) Elements CPU time (s)

TENSOR EFUNC TENSOR EFUNC
16 0.12 6.69 64 0.08 50.1
64 0.35 24.2 512 0.79 401

256 1.09 98.3 4096 6.71 3304

and hex topologies and specific known relationships for the basis functions and associated
derivatives.

In addition to these possible future improvements in performance, the high cost of the
new force option is highly apparent in the ideal MHD step. Much of the total cost for real
problems of interest actually is related to the magnetic diffusion step which involves solving
an implicit system. There is also a significant cost in the ALEGRA remesh/remap phase
which is the most common way the code is run. Therefore, for many problems the cost of an
ideal MHD step which utilizes the energy based magnetic force methodology may not be as
visible and there may be additional advantages for better discrete energy balances which will
show up in better results at low resolution.

6. Summary. A new option in calculating the Lorentz force in ALEGRA, consistent
with the discrete form of the energy used for the magnetic diffusion, has been presented. This
method utilizes the Intrepid compatible discretizations library and Trilinos Sacado automatic
differentiation technology, two on-going projects at Sandia National Laboratories. Initial
results confirm a qualitative improvement in energy conservation over current force options,
but the results come at high computational expense. Reducing this cost and understanding

A.R. Schiemenz and A.C. Robinson 241

the tradeoffs involved remain an open area of research.

7. Acknowledgments. We thank Pavel Bochev, Denis Ridzal and David Day for their
work in developing Intrepid. Eric Phipps is a lead developer for Sacado and modified Intrepid
so that both code bases would work properly together for our use in ALEGRA.

REFERENCES

[1] P. B. B  A. C. R, Matching algorithms with physics: Exact sequences of finite element spaces,
in Collected Lectures on the Preservation of Stability under Discretization, SIAM, Philadelphia, 2002,
ch. 8.

[2] A. C. E  G. A. M, Electrodynamics of Continua I and II, Springer-Verlag, 1990.
[3] M. E. G, An Introduction to Continuum Mechanics, Academic Press, 1981.
[4] T. M, T. B, M. D, C. G, T. H, H. H, R. L, T. M, M. M,

B. O, A. R, S. S, T.G.T, E. Y, R. V, M. C, B. J, M. D. K,
 D. S, Towards a predictive MHD simulation capability for designing hypervelocity magnetically-
driven flyer plates and PW-class z-pinch x-ray sources on Z and ZR, 2006.

[5] R. M, Magnetohydrodynamics, Kluwer Academic Publishers, 1990.
[6] P. W. R, Resistive MHD for 2D axisymmetric Lagrangian simulation codes. Unpublished presentation at

HEDP-MHD Workshop, Albuquerque, New Mexico, January 14, 1998.
[7] A. C. R  C. J. G, Three-dimensional z-pinch wire array modeling with ALEGRA-HEDP, Com-

puter Physics Communications, 164 (2004), pp. 408–413.

CSRI Summer Proceedings 2007 242

EFFECT OF ASPHERICITY ON THE DIFFUSION OF SOLUTES IN A
LENNARD-JONES SOLVENT

BABATUNDE O. OGUNTADE∗ AND STEVEN J. PLIMPTON†

Abstract. This work focused on studying the effects of shape on the behavior of colloidal suspensions. Specifi-
cally, the rotational and translational diffusivities of aspherical particles in solvents were measured, with the solvent
approximated as a Lennard-Jones fluid. Recent additions to the LAMMPS molecular dynamics package were used
which enable the pairwise interactions of two ellipsoidal or an ellipsoidal and spherical particle to be computed
via the Gay-Berne potential. The preliminary results indicate that shape has a modest effect on diffusivity, though
we limited our study to ellipsoids with an aspect ratio no larger than 3. This was because the distance-of-closest-
approach computation needed for Gay-Berne interactions of ellipsoids and spheres (solvent) becomes less accurate
beyond that limit. Future work on a more robust algorithm to perform this computation could extend these studies to
higher aspect ratio ellipsoids.

1. Introduction. Colloids are dispersions of particles in a continuous medium. They are
ubiquitous in nature and also find application in industrial settings. Typical colloidal particles
in suspension span a length scale of 1 nanometer to 1 micron and are found in materials such
as aerosols, emulsions, foams, etc. An assumption made in most computational models of
such systems is that the colloidal particles are spherical. This simplifies the analysis but could
obscure mechanical, structural, and dynamic properties specific to suspensions of aspherical
particles.

As a first step in understanding the effect of shape on the dynamic behavior of suspen-
sions, a pair potential designed for aspherical particles can be used, such as the Gay-Berne
potential, originally devised for liquid-crystal polymer (LCP) systems. This option is attrac-
tive, because LCPs are of comparable size to the smallest of colloidal particles and LCP
mixtures exhibit properties like birefringence and liquid phase changes which have counter-
parts in colloidal systems as well. From a computational standpoint, the Gay-Berne potential
can also be computed for an ellipsoid interacting with a spherical particle, which means a
solution of colloidal particles in a traditional solvent can be simulated directly.

We note that the comparison between LCP and colloidal systems breaks down as the
size of solute particles increase because of increased time of interaction which could result
in increased relaxation times. Hydrodynamic effects of the background solution on large
colloidal particles is also expected to be more pronounced. Notwithstanding these drawbacks,
this project modeled the diffusive behavior of small colloidal particles (1 nm) dispersed in an
LJ solvent using the Gay-Berne potential.

The objectives were to (1) measure the transport coefficients of colloidal suspensions
using LCP-based potentials; (2) determine the applicability of LCP-based potentials to col-
loidal suspensions by comparing the numerical solutions to known experimental and numer-
ical values; and (3) assess the applicability of an integrated form of LCP based potentials for
suspensions of larger colloidal particles.

The simulations discussed in this paper were run with the LAMMPS parallel molecular
dynamics package [4].

2. Measured Properties. The transport properties measured in this study are the ro-
tational and translational diffusivities of prolate and oblate spheroids as in Figure 2.1. The
rotational diffusion coefficient is a measure of how quickly particles relax to a state uncorre-
lated with their initial orientation, while the translational diffusion coefficient is a measure of
the mobility of particles moving in a translational sense through the background fluid.

∗University of Texas at Austin, tade@utexas.edu
†Sandia National Laboratories, sjplimp@sandia.gov

B.O. Oguntade and S.J. Plimpton 243

F. 2.1. Prolate (left) and Oblate (right) Spheroids

The rotational diffusivity is measured by tracking changes in the orientation of individual
ellipsoids. The orientation is the direction of the longest axis for prolate spheroids; for oblate
spheroids it is the direction of the shortest axis. The Green-Kubo relation for the dependence
of the rotational diffusivity coefficient on orientation is given by

< p(t + τ) • p(t) >= exp(−2DR) (2.1)

where p is the orientation vector of a particle, DR is the rotational diffusivity and <>
denotes an average. The dot product of time-varying p with an initial reference p exhibits
a decay from 1.0 (correlated) to 0.0 (uncorrelated), the time constant of which is inversely
proportional to DR.

The translational diffusivity is measured by tracking the mean-squared displacement
(MSD) of individual particles over time. For a three-dimensional system, the Green-Kubo
relation connecting MSD to a translational diffusion coefficient is

< (x(t + τ) − x(t)) • (x(t + τ) − x(t)) >= 6DTτ (2.2)

where x is the position vector and DT is the diffusion coefficient. For a system of freely
diffusing particles, the MSD increases linearly in time and the slope of the change is propor-
tional to DT .

LAMMPS already had the capability of measuring DT during a simulation. We coded
a new diagnostic capability for DR measurement as part of this project and added it to
LAMMPS. Both the diagnostics perform appropriate averaging over particles and time to
compute statistically averaged values of these diffusion coefficients for a particular simula-
tion run.

3. Gay-Berne Potential. The Gay-Berne potential, a recent addition to LAMMPS by
Mike Brown at Sandia, computes an anisotropic LJ interaction [2] between pairs of ellipsoidal
particles or an ellipsoidal and spherical particle via the formulas

U(A1,A2, r12) = Ur(A1,A2, r12, γ) · η12(A1,A2, υ) · χ12(A1,A2, r12, µ)

Ur = 4ε(%12 − %6)

244 Effect of Asphericity

% =
σ

h12 + γσ

where A1 and A2 are the transformation matrices from the simulation box frame to the
body frame and r12 is the center-to-center vector between the particles. Ur controls the shifted
distance-dependent interaction based on the distance-of-closest-approach of the two particles
(h12) and the user-specified shift parameter γ. When both particles are spherical, the formula
reduces to the usual Lennard-Jones interaction.

The first term in the above formula accounts for the dependence of the interaction on
distance where the interparticle distance is replaced by the distance-of-closest-approach. The
second term captures the interaction dependence on the orientation of the particles, while
the third term defines the dependence of the interaction on position. The interaction strength
between the particles is usually stronger in the side-to-side configuration. A fuller discussion
of the υ and mu variables in this formula, and the details of the η12 and χ12 terms, is outside
the scope of this short paper. The interested reader is referred to the [2] and [3] references and
to the explanatory document http://lammps.sandia.gov/doc/Eqs/pair_gayberne\
_extra.pdf written by Mike Brown, which is part of the on-line LAMMPS documentation.

For large uniform molecules it has been shown that the usual LJ energy parameters ε for
interactions between ellipsoidal particles aligned on different axes a, b, c are approximately
representable in terms of local contact curvatures as

εa = σ ·
a

b · c
; εb = σ ·

b
a · c

; εc = σ ·
c

a · b

This formulation is also consistent with the Everaer paper’s RE-squared potential [3].
We mention this because the Everaers approach for creating interaction potentials between
pairs of large particles by integrating over a collection of small Lennard-Jones particles is
compatible with the Gay-Berne formulation and is a mechanism for deriving potentials for
larger colloidal particles, including aspherical particles. This extended approach is one we
are planning to implement in LAMMPS as an extension to the work discussed here.

When aspherical particles interact via the Gay-Berne potential, both forces and torques
on the particles are produced, via the spatial derivatives of these formulas. Special integra-
tion options are available in LAMMPS to evolve the translational and angular velocity of each
particles as well as their position and orientation. The latter is represented for aspherical par-
ticles via quaternions, which provide numerical stability when time integration is performed
[1].

4. Simulation Details. The simulation boxes for simulations of both prolate and oblate
particles are illustrated in Figure 4.1. The domain is periodic in all three dimensions. The
aspect ratio of the ellipsoidal particles was set at 3.

The asphericity of the particles dictates that the pairwise interactions have some form of
anisotropy. We specify this in our model by setting the ε for interactions in the side-to-side
configuration to be 5x stronger than for end-to-end interactions, which is a typical of other
published models using Gay-Berne potentials for particles with aspect ratios around 3.

The relative sizes of the particles were chosen so that the volumes of prolate and oblate
spheroids were equal. For a desired volume fraction of ellipsoidal particles, the system was
initialized in the following manner. A lattice of spherical particles was created at a very low
density. Some fraction of these were converted randomly to ellipsoidal particles, each at a
random orientation. The low density insured that even with elongated particles, no overlaps

B.O. Oguntade and S.J. Plimpton 245

F. 4.1. Simulation box showing prolate (red) and oblate (green) spheroids in a Lennard-Jones solvent (blue).

occurred. This system was run in a constant NPT ensemble to shrink the volume of the box to
a desired solvent reduced density, using a reduced LJ timestep of 0.00025. The dense system
was then run for an additional 10,000 timesteps in the NVT ensemble to equilibrate it. The
thermostat was then turned off and a constant NVE run of 150,000 steps was performed to
generated the translational and rotational data for the two diffusion coefficient. For rotational
diffusivity, the results for the first 20000 timesteps (after equilibration) were used in calcu-
lating the coefficient as it is a short-time phenomenon. Data for the entire run was used in
estimating the translational diffusivity.

A collection of runs with volume fractions varying from 0.002 to 0.18 were performed
for both shapes. The total number of particles in a simulation (solute and solvent) was approx-
imately 10648. The simulation runs were performed on the CSRI’s “qed” machine, typically
running on 16 processors. A typical simulation for a single state point ran in an hour or two
of wall-clock time, so larger and longer simulations are planned.

5. Results. The plots of Figures 5.1 and 5.2 show results for the two diffusion coeffi-
cients as a function of volume fraction. Each data point is from a 150,000 timestep run as
described in the previous section.

Translational diffusivity decreases linearly with the volume fraction of both prolate and
oblate spheroids. The values of the coefficients computed for both spheroids are similar for
the concentration regime investigated. The import of this is that aspherical particles are less
mobile at high volume fractions, but individual particle shape has less effect on the trans-
lational diffusivity. How general this conclusion is remains to be seen when higher aspect
ratio ellipsoids are simulated. The rotational diffusivity data exhibit a weaker dependence
on volume fraction, but the oblate particles have a consistently higher rotational diffusivity
than their prolate counterparts, meaning they can spin or rotate more rapidly in the dense
surrounding fluid.

6. Conclusions. The effect of shape on the rheology of suspensions is a largely unex-
plored area of colloidal research. We have measured the translational and rotational diffu-
sivity of spheroids (volume fraction 0.02-0.18) in a model solvent across a range of reduced
densities of 0.66-0.73. The aspect ratio of the spheroids were held at 3 because of the current
restriction on our optimization routine that evaluates the distance-of-closest-approach used
in the Gay-Berne potential in calculating the interaction potential. We intend to make the

246 Effect of Asphericity

�

����

����

����

����

���

����

� ���� ��� ���� ���

	
��
��������
�

�
��
��

��
��
��

������� ��
�����

F. 5.1. Translational diffusivity coefficient dependence on volume fraction of aspherical particles

�

����

����

����

����

���

����

����

����

����

� ���� ��� ���� ���

	
��
��������
�

�
��
��

��
��
��

������� ��
�����

F. 5.2. Rotational diffusivity coefficient dependence on volume fraction of aspherical particles

routine more robust for studies involving higher aspect ratio ellipsoids.
In summary, both the translational and rotational diffusivity coefficients decreased lin-

early with volume fraction, though the dependence was stronger for the translational coeffi-
cients. Translational diffusivity coefficients were found to be independent of the shape of the
spheroids within the range of concentration probed. For the rotational case, oblate spheroids
had larger diffusivities than prolate spheroids by up to a factor of 2x. The results obtained
thus far look qualitatively reasonable, making the application of Gay-Berne potential models
to aspherical colloidal suspensions promising. Longer runs need to be performed to quantify
the error bars on the diffusivity coefficients, and the computed values still need to be com-
pared to theoretical and experimental measurements to validate our overall approach. Once
this is done, an integrated version of the Gay-Berne potential could be used for large inter-

B.O. Oguntade and S.J. Plimpton 247

acting aspherical particles to address a class of problems hitherto intractable. Additionally,
for realistic simulations of colloidal suspensions containing large particles at the micron size
scale, a “coarse grained” approach must be used to include solvation effects, since the number
of small solvent particles will otherwise be computationally prohibitive. For this reason, we
are also working on adding new coarse-grained solvent models to LAMMPS.

7. Acknowledgements. We thank Randy Schunk and Jeremy Lechman at Sandia for
additional support and fruitful discussions on these topics.

REFERENCES

[1] M. P. A  D. J. T, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
[2] C. R.B  C.Z, A Gay-Berne potential for dissimilar biaxial particles, Chem Phys Lett, 297

(1998), pp. 8–14.
[3] R.E  M. E, Interaction potentials for soft and hard ellipsoids, Phys. Rev. E, 67 (2003),

pp. 041710–041710–8.
[4] S.P, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys, 117 (1995), pp. 1–19.

See also the LAMMPS WWW site at http://lammps.sandia.gov.

CSRI Summer Proceedings 2007 248

A STUDY OF SOLVERS FOR FLUID DENSITY FUNCTIONAL THEORIES

SARAH M. KNEPPER∗ AND MICHAEL A. HEROUX†

Abstract. The use of density functional theories for inhomogeneous fluids (Fluid-DFTs) creates large systems
of residual equations by minimizing a free energy functional that is dependent on a set of density fields. Each
system of equations can be viewed as one large, global system and solved in that manner, either by an iterative or
a direct method. Alternatively, for certain types of problems, by intelligently ordering the degrees of freedom, a
two-by-two block structure may be imposed and a Schur complement computed, reducing the run-time and memory
requirements. Previously, the Tramonto package [3] allowed CMS-polymers [1] without Coulomb effects to be
solved in this more efficient manner (see [7]). We will now consider how adding Coulomb effects changes the
structure of the sub-matrices, though still allowing the use of a Schur complement approach.

1. Introduction. Density functional theories (DFTs) are useful for a variety of situ-
ations at different length scales, including predicting electron distribution, studying self-
assembly, and observing biological mechanisms at the cellular level. Segregated solvers,
which separate each degree of freedom (DOF), can be used in conjunction with a Schur com-
plement approach, which eliminates variables by using block Gaussian elimination. This can
allow DFT problems to be solved more efficiently than using a global approach, especially in
the case of polymers, on which we focus. In particular, we will consider how the introduction
of Coulomb effects on CMS-polymers affects the block structure of the global matrix.

We briefly introduce Fluid-DFTs in Section 2, with Section 3 describing the segregated
Schur complement strategy for CMS-polymers. The block structure with the addition of
Coulomb effects is presented in Section 4, and results are given in Section 5. Finally, Section 6
discusses future work in this area while Section 7 summarizes the conclusions of the research
presented here.

2. Brief Overview of Fluid-Density Functional Theory. The theory behind Fluid-
DFTs is exact, but approximations must be used. Specifically, approximate functionals have
been developed as perturbations to a hard sphere reference system. The free energy func-
tional Ω, which depends on a set of density fields ρi(r), can be split into ideal (Fid), hard
sphere (Fhs), and perturbation (Fp) contributions. For a system with Ni species, we have

Ω = Fid + Fhs + Fp −

Ni∑
i=1

∫
ρi(r)

[
Vext

i (r) − µi

]
dr, (2.1)

where r are the fluid particles, Vext
i is the known external field acting on species i, and µi is

the chemical potential of species i. Please see [4, 5, 6, 7, 10] for more information about these
and following terms. We wish to find the global free energy minimum:

δΩ

δρi(r)
= 0. (2.2)

For our polymer problems, we use the CMS-DFT crafted by Chandler, McCoy, and
Singer [1]. This theory is developed by minimizing a free energy functional with respect to
both the density fields and an unknown field U. The unknown field variable requires a fluid
of ideal chains to have exactly the same density profile as do the chains of interest in a known
external field Vext. The density equation is

∗Emory University, smknepp@emory.edu
†Sandia National Laboratories, maherou@sandia.gov

S.M. Knepper and M.A. Heroux 249

ρi =
ρb,i

Ni

Ns∑
s=1

Gs(r)Ginv
s (r)

e−βUβ(s)(r) , (2.3)

where the sum over s is a sum over all Ns segments of type i in a chain, β(s) represents the
bead type associated with segment s, and G and Ginv are propagator functions that describe
chain connectivity.

The unknown field equations are

Ui(r) = Vext
i (r) −

∑
β

∫
ciβ(r − r′)(ρβ(r′) − ρbβ)dr′, (2.4)

where ciβ is the direct correlation function between sites i and β in the bulk fluid and ρbβ is
the bulk density for site type β. The propagator functions obey the recursion relations

Gs(r) = e−βUi(s)(r)
∫

ω12(r − r′)Gs−1(r′)dr′, s = 2 . . .Ns, (2.5)

Ginv
s (r) = e−βUi(s)(r)

∫
ω12(r − r′)Ginv

s+1(r′)dr′, s = (Ns − 1) . . . 1, (2.6)

where ω12 is a delta function. We note that G1 = e−βUi(1)(r) and Ginv
Ns
= e−βUi(Ns)(r).

3. Block Equation Framework with Respect to Polymers. As the equations show,
there are many DOFs per node, though internodal coupling is weak. Many of the DOFs
exhibit a one-way dependence. The main idea is to organize the DOFs physics-first in such a
way that a two-by-two block structure is imposed on the matrix as



A1,1
11 · · · A1, j

11 A1, j+1
12 · · · A1,k

12
...

. . .
...

...
. . .

...

A j,1
11 · · · A j, j

11 A j, j+1
12 · · · A j,k

12
A j+1,1

21 · · · A j+1, j
21 A j+1, j+1

22 · · · A j+1,k
22

...
. . .

...
...

. . .
...

Ak,1
21 · · · Ak, j

21 Ak, j+1
22 · · · Ak,k

22





x1
1
...

x j
1

x j+1
2
...

xk
2


=



b1
1
...

b j
1

b j+1
2
...

bk
2


(3.1)

where k is the number of DOFs per node and j is the number of DOFs associated with the first
block of equations. The coefficients generated by DOF p interacting with DOF q are found
in the appropriate Ap,q subblock. We will refer to the northwest portion of the matrix as A11,
the northeast as A12, the southwest as A21, and the southeast as A22. Similarly, x1 and b1 are
the upper, and x2, b2 the lower, parts of x and b, respectively.

The basic solving strategy for each linear system generated by Newton’s method then
becomes:

1. Reorder the DOFs so that A11 has all the one-way dependencies, making its inverse
easy to apply in parallel. Specifically, Eqs. (2.5) and (2.6), the G and Ginv equations,
belong here. The density, Eq. (2.3), and the unknown field, Eq. (2.4), equations
belong in A22.

250 A Study of Solvers for Fluid Density Functional Theories

2. Use an approximation of A22 for a preconditioner P for S = A22 − A21A−1
11 A12, the

Schur complement of A with respect to A22. See Section 4 for more details.
3. Solve S x2 = (b2 − A21A−1

11 b1) using an iterative solver like GMRES with precondi-
tioner P.

4. Solve A11x1 = (b1 − A12x2), realizing that A11 was constructed so its inverse is easy
to apply.

4. Addition of Coulomb Effects. To introduce Coulomb effects into the polymer
model, we must add the following to the left-hand side of Eq. (2.2):

zie

VC +
∑

j

∫
ρ j(r′)z je
|r − r′|

dr′
 = zieφ(r) (4.1)

where zi is the charge of species i and VC is the Coulombic part of the known external field
(Vext). We must also solve Poisson’s equation:

∇2φ(r) +
∑

i

zieρi(r) = 0. (4.2)

Eq. (2.4) must also be amended to include Coulomb interactions. Since the unknown
field equations interact with the Coulomb equations, and the Coulomb equations interact with
the primitive density equations, the inclusion of Coulomb effects introduces three new ma-
trices. An immediate question is where should the Coulomb-on-Coulomb matrix (hereafter
referred to as the Coulomb matrix) be placed? There are two possible answers:

1. In A11, where it can be solved directly. The G and Ginv equations and the Coulomb
equations do not interact with each other. The other two matrices would become part
of the off-diagonal A12 and A21 blocks. This location may be more appropriate if the
problem is 1- or 2-dimensional and run on few processors. However, the Coulomb
matrix may be very ill-conditioned or even singular, so a direct solve may not be
possible.

2. Or in A22, where multi-level preconditioning can be applied. The other two matrices
would also go into the A22 block. This may be the more appropriate choice for a
3-dimensional problem or one with many processors.

Since the addition of the Coulomb matrix to the A11 block is fairly straightforward, we
will not go into any implementation details. However, we will look more closely at including
the Coulomb matrix in the A22 block. Specifically, our A22 block will look like the following:

A22 =

 B11 B12 0
0 B22 B23

B31 B32 B33

 (4.3)

where:
• B11 is the Coulomb matrix, a Poisson-like matrix of dimension n, where n is the

number of nodes in the system,
• B12 is the Coulomb-on-density matrix, consisting of Ni finite-element mass matrices,

each scaled by the charge of its corresponding component (zi),
• B22 is the density-on-density matrix, a diagonal matrix of dimension Ni × n,
• B23 is the density-on-unknown field matrix, a diagonal matrix of the same size as

B22, but whose elements are orders of magnitude smaller than B22 or B33,

S.M. Knepper and M.A. Heroux 251

• B31 is the unknown field-on-Coulomb matrix, consisting of Ni diagonal matrices,
each with the corresponding zi on the diagonal,

• B32 is the unknown field-on-density matrix, also known as the F matrix in [7]; this
is the most dense submatrix in the entire matrix, and

• B33 is the unknown field-on-unknown field matrix, a diagonal matrix of the same
size as B22.

To help visualize these different submatrices, Figure 4.1 shows the A22 block of a 1-
dimensional, 3-component polymer system with Coulomb effects; the third component is a
neutral solvent (charge of 0).

F. 4.1. Visualization of A22 for a 3-component system

As stated in Section 3, we use an approximation of the A22 block to precondition S .
Since the values of B23 are relatively very small, we approximate A22 by setting B23 to zero
and leaving the other submatrices unchanged. We then perform one block Gauss-Seidel back-
solve. That is,

 B11 B12 0
0 B22 0

B31 B32 B33


−1  x1

x2
x3

 =
 y1

y2
y3

 (4.4)

where
• y2 = B−1

22 x2, a diagonal scaling,
• y1 = B−1

11 (x1 − B12y2), which requires the use of a multi-level preconditioner from
the ML package of Trilinos [8], and

• y3 = B−1
33 (x3 − B31y1 − B32y2), two matrix-vector multiplications followed by a diag-

onal scaling.
Using the Schur complement approach is much faster and more memory-efficient than

solving a global matrix, as will be shown in Section 5.1.

5. Computational Results. We will now present results for two different types of tests.
First, we will demonstrate the effectiveness of the Schur complement method in comparison
to a global solving approach. However, since we only have one test problem, our results will
be a little meager. We will also offer a comparison of solving times for an iterative solver
versus a direct solver for the global matrix on a wide range of test problems. All of the tests
were run on an Intel Core 2 computer with a 2.4 GHZ clock rate.

252 A Study of Solvers for Fluid Density Functional Theories

5.1. Schur Approach versus Global Approach. This problem considers a CMS-
polymer system with Coulomb effects. Three components make up this 8-2-8 lipid bilayer;
the tail segments carry a negative charge while the two head beads carry a positive charge.
The third component, the solvent, is neutral. We will consider two different sets of boundary
problems for this 1-dimensional problem:

1. both of the boundary conditions are reflective, and
2. the left boundary condition is a continuation boundary while the right boundary

condition is reflective.
Table 5.1 compares the Schur complement approach (S) to the global approach (G).

A level-4, zero drop-tolerance ILUT preconditioner with row-sum scaling was used for the
global matrix. As is apparent from the table, the Schur approach is considerably faster, es-
pecially as the number of processors increases. This is due to the fact that the problem is
difficult to solve, especially when preconditioning must be applied in parallel for the global
solve.

Performance results for the Schur approach alone are given in Table 5.2. This table com-
pares the number of Newton nonlinear iterations required for different numbers of processors.
As can be seen, the number of nonlinear iterations generally increases slightly with the pro-
cessor count, though the average number of linear iterations per nonlinear iteration decreases
slightly.

These results were given with the Coulomb matrix in the A22 part of the matrix, as de-
scribed in Section 4. We also tried including the Coulomb matrix in the A11 part of the matrix;
however, due to its singularity, the direct solver would fail. A potential solution to this was to
add 10−12 to the diagonal, effectively changing the steady-state problem into a transient prob-
lem with a time step of 1012. Though this did allow convergence with certain parameters, it
would fail on multiple processors. Thus, we have no further results for placing the Coulomb
matrix into the A11 block.

T 5.1
Comparison between the Schur complement approach, denoted by S , and the general, global approach, de-

noted by G, for the polymer problem described above. The columns are: the number of processors used, the number
of nonlinear iterations, the average number of linear iterations per nonlinear iteration, the solve time (in seconds)
per nonlinear iteration, and the ratio of solve times from the global method to the Schur method. The data in the
upper part correspond to the first set of boundary conditions while the data in the lower part correspond to the
second set.

Procs Niter Liter T/Niter TG / TS

S G S G S G
1 22 5 78 79 0.87 6.27 1.63
2 23 17 51 84 0.51 3.61 5.25
1 22 7 49 82 0.69 6.39 2.95
2 25 23 53 58 0.52 2.68 4.72

5.2. Iterative versus Direct Solvers for Global Matrix. We now consider the general
method for solving. We compare the time required to solve the global matrix via an iterative
method, namely GMRES with a level-4 ILUT preconditioner with zero drop-tolerance, to the
time taken for a direct method, using an Amesos solver with SuperLU [2]. A total of 42 tests
were run; on one processor, the direct solver was faster in 26 of the tests, or 62% of the time.
When two processors were used, however, the direct solver was faster only about 12% of
the time, in 5 tests. The direct solver was not able to solve the largest problem (incidentally,
that is the problem described in the previous section). Figure 5.1 shows a plot of the timings
on one processor. The tests are sorted by the total number of unknowns (the number of

S.M. Knepper and M.A. Heroux 253

T 5.2
A comparison of iterations for different number of processors for the polymer problem described above. The

columns are: the number of processors, the number of nonlinear iterations, and the average number of linear
iterations per nonlinear iteration. The left part of the table corresponds to the first set of boundary conditions while
the right part corresponds to the second set. The asterisk (*) denotes a problem that converged after the given
number of iterations but did not complete its run.

Procs Niter Liter Niter Liter

1 22 78 22 49
2 23 51 25 53
3 24 45 24 42
4 27 36 23 37
5 26 36 23* 36
6 200+ 200+

unknowns per node multiplied by the number of nodes). However, the number of unknowns
is not necessarily an indicator of the “toughness” of a problem. In general, the direct solver
did well for non-polymer problems.

Table 5.3 shows the times for seven specific tests. The 42 tests were separated into seven
groups, and the results from an average test from each group is presented. As can be seen,
the savings of using a direct solver are sometimes quite impressive, though again, we must
remember that this is with only one processor.

One may also wonder about the effectiveness of using a distributed direct solver. Timings
were also obtained for Amesos with SuperLU DIST [9]; however, most of the test problems
were not large enough to offset the costs of using SuperLU DIST. On a side note, the problem
not solvable by SuperLU was able to be solved, and quicker than the iterative solver, with
SuperLU DIST. However, more tests on larger problems would need to be run to determine
the effectiveness of using a direct solver in parallel.

F. 5.1. Timings comparison for iterative (GMRES) and direct (SuperLU) solvers for 42 test problems, ranked
by number of unknowns

254 A Study of Solvers for Fluid Density Functional Theories

T 5.3
Comparison of time, in seconds, required for seven example problems to be solved iteratively or directly. Hard

sphere is abbreviated HS while LJ stands for Lennard-Jones.

Problem Type Iterative Time Direct Time
2-D Charged HS 4.90 4.86
3-D Charged HS 307.20 172.84
1-D HS near wall 0.06 0.04

1-D LJ Fluid 2.19 2.91
1-D Electrolyte 5.03 4.09
1-D 3-Polymer 7.99 10.65
1-D 5-Polymer 36.85 84.13

6. Future Work. A number of opportunities exist for future work to be done. First, we
would like to determine a way to include the Coulomb matrix in the A11 block that allows
for a direct solve on multiple processors, or determine a way to verify that such an approach
is impossible for a given problem. We would also like to run more test problems, especially
those having both CMS-polymers and Coulomb effects, on varying numbers of processors.
Finally, we would like to take advantage of the parts of the matrix that do not change between
nonlinear iterations; namely, these are blocks B11, B12, B31, and B32 from Eq. (4.3).

7. Conclusions. In this paper we presented a segregated Schur complement approach
to solving CMS-polymer problems, particularly those with Coulomb effects. We observed
that solving with this method instead of a global approach is typically faster and, though
we did not provide results showing it, also more memory efficient. Additionally, we looked
at solving the global matrix with a direct solver instead of an iterative one and found that
there may be savings, especially when using one processor. We look forward to applying our
research to further test cases.

8. Acknowledgements. We would like to acknowledge the continual assistance of
Andy Salinger for his help with Tramonto and DFTs throughout this project. Additionally, the
suggestions given by Chris Siefert for ML parameters have proved highly valuable. Finally,
the first author would like to acknowledge the constant support and help of Mike Heroux,
who is truly a wonderful mentor.

REFERENCES

[1] D. C, J. D. MC,  S. J. S, Density functional theory of nonuniform polyatomic systems. I.
General formulation, J. Chem. Phys., 85 (1986), pp. 5971–5976.

[2] J. W. D, S. C. E, J. R. G, X. S. L,  J. W. H. L, A supernodal approach to sparse
partial pivoting, SIAM J. Matrix Analysis and Applications, 20 (1999), pp. 720–755.

[3] L. F, Tramonto home page, http://software.sandia.gov/tramonto, (2007).
[4] L. J. D. F  A. G. S, Two- and three-dimensional nonlocal density functional theory for inho-

mogeneous fluids I. Algorithms and parallelization, J. Chem. Phys., 159 (2000), pp. 407–424.
[5] , Rapid analysis of phase behavior with density functional theory. II. Capillary condensation in disor-

dered porous media, J. Chem. Phys., 118 (2003), pp. 7466–7476.
[6] L. J. D. F, A. G. S, M. P. S, J. D. W,  A. L. F, Numerical challenges

in the application of density functional theory to biology and nanotechnology, J. Phys.-Cond. Matter, 14
(2002), pp. 12167–12187.

[7] M. A. H, A. G. S,  L. J. D. F, Parallel segregated Schur complement methods for fluid
density functional theories, SIAM SISC, 29 (2007), pp. 2059–2077.

[8] M. A. H  J. M. W, Trilinos Users Guide, Tech. Report SAND2003-2952, Sandia National
Laboratories, 2003.

S.M. Knepper and M.A. Heroux 255

[9] X. S. L  J. W. D, SuperLU DIST: A scalable distributed-memory sparse direct solver for unsym-
metric linear systems, ACM Trans. Mathematical Software, 29 (2003), pp. 110–140.

[10] M. P. S  L. J. D. F, A new efficient method for density functional theory calculations of inhomo-
geneous fluids, J. Comp. Phys., 190 (2003), pp. 184–200.

CSRI Summer Proceedings 2007 256

STOKES FLOW WITH CAPILLARY FORCES USING SUNDANCE

JOHN W. FETTIG∗ AND S. SCOTT COLLIS†

Abstract. We simulate and analyze the flow of a solidifying fluid in a crack as it would occur in proposed self
healing composites [17]. The specific system we consider is motivated by ongoing experiments using a monomer
healing agent that undergoes a ring opening metathesis polymerization initiated by Grubbs catalyst [9]. In this case,
the monomer healing agent flows into a crack bringing it into contact with a catalyst that induces polymerization. We
have designed a simulation tool to understand and optimize the coupled micron-scale fluid mechanics, the advection-
diffusion of the healing agent, and the solidification. This simulation tool uses a phase-field like model for the
changing viscosity, and is capable of modeling surface tension as well as moving contact lines. The simulator was
initially developed in Fortran 90 and then transitioned to the current implementation in C++ using Sundance.

1. Introduction. The concept of a composite material that is capable of responding
autonomically to damage was demonstrated by White et al. [17] with a polymer material ca-
pable of recovering 75% toughness in response to a crack-initiated heal event. This one-time
healing system is technologically promising, especially if it can lead to a material capable of
repeated, or continuous, self-healing. This goal of repeated or continuous healing motivated
recent efforts to embed a microvascular network, similar to those in biological systems, in
the material. Like a circulatory system, such a network is capable of continuous delivery of a
healing agent. Our investigation is motivated by a specific system in which Grubbs’ catalyst
induces dicyclopentadiene (DCPD) monomer to polymerize and heal the crack [9, 10]. The
monomer healing agent flows through microvascular channels which run in networks through
the material which is embedded with catalyst particles.

The hydrodynamics of such a polymerizing flow plays a key role in the determining how
such a system will respond to cracks. The design of a self-limiting reaction, which both heals
regions of damage while leaving intact a delivery system to heal future damage, is important
for the longevity of such a system. Current systems built with catalyst-embedded polymers
with microvasculatures have been successful, but have also shown greater sensitivity of heal-
ing effectiveness to system parameters than expected [16].

In this paper, we present a simulation model of such a self-healing system. This sim-
ulation model is based on an Eulerian-frame phase-field like solve for viscosity, coupled to
an advection-diffusion solver. An additional phase-field provides the capability of modeling
multiple fluids with surface tension and dynamic contact line.

The layout of this paper is as follows. In Section 2 we give a brief summary of the
governing equations for our model. Then, in Section 3 we summarize the motivation and im-
plementation of our numerical algorithm, as well as some notes on the implementation using
Sundance. We then show results for some sample problems in Section 4, which demonstrate
the capabilities of the code.

2. Governing Equations.

2.1. Stokes Flow. The polymerization’s effect on the flow of the monomer is approxi-
mated by a sharp rise in the viscosity with a modification to a formula proposed by Roller [8].
Experimental measurements of tertiary amine catalyzed dicyandiamide cured epoxy systems
suggest that viscosity rises according to

dµ(x, t)
dt

= µocecτH(φ(x) − φmin), (2.1)

∗University of Illinois at Urbana-Champaign, jfettig@uiuc.edu
†Sandia National Laboratories, sscoll@sandia.gov

J.W. Fettig and S.S. Collis 257

where µo is the viscosity of the monomer healing agent and c is a reaction rate parameter.
This time τ is a modification of Roller’s formula to account for the time a material point is in
contact with catalyst:

τ =

∫ t

0
H(φ(x) − φmin) dt

where H is the Heaviside step function, φ(x(t)) is the catalyst concentration for a material
point x, and φmin is a regularization parameter set to be 0.01 of the initial peak concentration.
For high enough viscosities the fluid is effectively solid.

An equivalent way of writing this, which allows for the use of Eulerian-frame methods,
is

dµ(x, t)
dt

= c̃µ

where c̃ = µocH(φ(x) − φmin). Using this equation, we can model the viscosity rise using a
phase-field like approach, where the advection of viscosity is coupled to a reaction term, c̃µ.
It is worth noting here that we can generalize this model to a two-part resin+hardener epoxy
system by changing the form of c̃ to c̃ = 4µoφ(1 − φ)H(φ(x) − φmin)H(φmax − φ(x))

By this model, 1/c is the appropriate time scale for the changing viscosity. Using this
time scale along with velocity scale U, length scale L, pressure scale µoU/L, and viscosity
scale µo, we non-dimensionalize time t∗, velocity u∗, position x∗, pressure p∗, and viscosity
µ∗, respectively, as

t = ct∗, x =
x∗

L
, u =

u∗

U
, p =

p∗L
µoU

, µ =
µ∗

µo
. (2.2)

The Navier-Stokes equations become

∇ · u = 0 (2.3)

ρcL2

µo

∂u
∂t
+ Re(u · ∇)u = −∇p + ∇ · (µ∇u), (2.4)

where the Reynolds number is Re = ρUL
µo

. The systems of interest consist of very small
(∼0.1mm) channels with a viscous fluid flowing at slow speeds. Thus, the Reynolds number
is small enough to neglect the inertia term in (2.4). The more subtle assumption is that c
is comparable to or smaller than the time scale U/L, which is true for the proposed DCPD-
Grubbs’ catalyst system. In this case, the time term’s coefficient will be comparable to or
smaller than the Reynolds number. So in the limit of zero Reynolds number, we have

∇ · u = 0 (2.5)
−∇p + ∇ · (µ∇u) = 0, (2.6)

the standard Stokes equations with variable viscosity.

2.1.1. Boundary Conditions. Fluid-fluid and fluid-wall interactions are important at
the length scales of interest. The no-slip assumption has been shown through MD simulations
to not hold on such small scales [6, 7]. There is a slip with linear friction [4] at these scales.
This is described by the Navier boundary condition:

βu · t = −t · τ · n (2.7)

258 Stokes Flow with Capillary Forces using Sundance

Here, β is a friction coefficient, τ = ν∇u − pI is the stress tensor, and t and n are the wall
tangent and normal vectors, respectively. By combining this with a penetration condition

u · n = −αn · τ · n, (2.8)

we can effectively replace the Stokes flux boundary condition

τ · n = s. (2.9)

This has been shown to be valid away from the contact line. At the contact line we have almost
complete slip, and the slip velocity is proportional to the deviation from the equilibrium
contact angle. This slip is being driven by uncompensated Young’s stress. To account for
this, the boundary condition becomes

βu · t = −t · τ · n + γ(cos θs − cos θ) (2.10)

In the context of the phase-field method, we can effectively have (2.7) away from the
contact line and (2.10) near the contact line by using the gradient of the phase-field ψ:

βu · t = −t · τ · n + γ
(
cos θs −

∇ψ · n
|∇ψ|

)
∇ψ · t (2.11)

This is a form of the generalized Navier boundary condition (GNBC) [6].

2.2. Advection-Diffusion. The viscosity depends on the concentration of catalyst φ,
which is in turn governed by an advection-diffusion equation

∂φ

∂t
= − (u · ∇) φ + ∇ · (D∇φ) . (2.12)

We assume that the diffusion parameter D is related to the viscosity by the Stokes-Einstein
relation, which is parameterized by the Schmidt number as

D =
ρ

Sc µ
. (2.13)

This model is an accepted approximation and is appropriate for the phenomenological inves-
tigation we report here. The algorithm admits more general constitutive models and can be
refined to match any particular material.

2.3. Phase-field. We introduce a phase-field ψ in order to model free surfaces and two
fluid flows, where free surface effects such as surface tension and dynamic contact line are
important. The phase-field is passively advected by the flow field, via

Dψ
Dt
= 0.

ψ is initialized to be a “smoothed” Heaviside function, with 0 representing fluid 0 and 1
representing fluid 1. The “smoothed” function in this case is

ψo =
1 + tanh

(
n
W

)
2

where n is the distance in the normal direction from the interface and W is a measure of the
width of the interface. Typically W will be proportional to the diameter of the elements close
to the interface.

J.W. Fettig and S.S. Collis 259

The equilibrium contact angle can be enforced using a boundary condition to the Stokes
flow equation, as described in §2.1.1. We also add a surface tension term to the Stokes
equation:

fσ = σκ(x)δ [n · (x − xs)] n

where κ(x) is the curvature of the interface and xs is the location of the interface. κ can be
stated in terms of the normalized gradient of the phase-field as

κ(x) = −∇ ·
(
∇ψ

|∇ψ|

)
and we approximate δ [n · (x − xs)] n as

δ [n · (x − xs)] n = ∇ψ.

Since the phase-field approximation sharpens with decreasing element diameter (h) near the
interface, in the limit that h→ 0 we recover the delta function [1].

3. Numerical Method. We solve the Stokes flow equation using Taylor-Hood finite
elements. The viscosity µ, and the phase field ψ are calculated on linear elements. The
catalyst concentration φ is calculated on quadratic elements.

3.1. Stabilization. The advection-reaction equation for viscosity and the advection
equation for the phase-field are stabilized using Streamline Upwind/Petrov-Galerkin [2].
The choice of stabilization parameter τ is a trade-off between the popular choices for the
advection-dominated case and the transient-dominated case [12, 15]:

τ =

(2|u|
h

)2

+

(
2
∆t

)2−1/2

This trade-off is essential in the viscosity calculation where it is possible for the interface
between high and low viscosity regions to have high transients but low advection and vice-
versa.

3.2. Hybrid Implicit-Explicit Time stepping. All of the equations are advanced us-
ing a hybrid implicit-explicit time stepping scheme which appears in the appendix of [13].
The need for a hybrid approach arises because of non-constant diffusivities in the advection-
diffusion equation, and a non-constant diffusion-like term in the stabilized advection equation.
A fully explicit scheme would have severe time step restrictions, whereas a fully implicit
scheme is challenging due to the non-constant diffusivities.

We proceed by writing the advection-diffusion equations as

∂φ

∂t
= L(φ) + N(φ) = R(φ)

All of the terms which we want to treat with an implicit method should appear in L and all
of the terms treated explicitly appear in N. The term we are trying to treat implicitly is the
diffusion term. Since it is non-constant, we further split it into a constant (but large) term and
a changing (but small) term:

∇ · (D(x, t)∇φ) = ∇ · (D(x, to)∇φ) + ∇ ·
[
(D(x, t) − D(x, to))∇φ

]

260 Stokes Flow with Capillary Forces using Sundance

Now we treat the first term with a Crank-Nicolson like scheme and we couple that with an
explicit third order Runge-Kutta scheme to treat the second term and the rest of the advection-
diffusion equation. This splitting changes our explicit time step restriction from ∆t ≤ ∆x2

2D to
∆t ≤ ∆x

2 since D(x, t) − D(x, to) ∼ ∆t ∼ ∆x.
Completely analogous splitting is done for the stabilization terms in the SU/PG stabilized

advection operator, where a diffusion-like operator appears.

3.3. Gradient and curvature reconstruction. Since we are computing the phase-field
on linear elements, the curvature, which is a second derivative, requires some special treat-
ment. We reconstruct the curvature using a sequence of minimization problems on the func-
tionals g and κ:

Ig =

∫
ω

1
2

(g − ∇ψ)2 dΩ

Iκ =
∫
ω

1
2

[
κ − ∇ ·

(
g
|g|

)]2

dΩ

This variational problem is solved on linear elements, giving us a projection of the gra-
dient and of the curvature onto linear elements. The curvature calculated in this manner is
only accurate near the interface, where |∇ψ| � 0, but since κ appears in the governing equa-
tions multiplied by |∇ψ|, this is not an issue. In future work it may be advisable to solve this
minimization problem for κ|∇ψ| instead of κ.

3.4. Sharp interface tracking with Phase-fields. The phase-field is initialized to a hy-
perbolic tangent profile, and ideally this should remain a hyperbolic tangent for all time,
regardless of the advection operator and topology changes. In practice this does not occur
because of the finite width of the interface and the possibility for gradients to exist in the
velocity field across this interface. Therefore it becomes desirable to maintain the fixed width
of the hyperbolic tangent profile over all time through a correction to the phase-field advec-
tion equation. This phenomenon is more often associated with the level-set method, where
maintaining a signed distance function is important and requires significant effort [11].

To accomplish this, we use a correction term introduced by Beckermann et al. [14] to the
advection operator. It is based on the kernel function

ψo =
1 + tanh

(
n
W

)
2

By substituting this kernel function into the equation for curvature, we get

κ = −
1
|∇ψ|

[
∇2ψ +

4ψ(2ψ − 1)(ψ − 1)
W2

]
We use this to correct the phase field by adding a weighted difference of this with the

actual curvature, calculated in §3.3, to the phase-field advection equation:

Dψ
Dt
= b(κ|∇ψ| − κ|∇ψ|)

= b
(
−∇2ψ −

4ψ(2ψ − 1)(ψ − 1)
W2 − κ|∇ψ|

)
Again, we have a diffusion operator which is treated implicitly in our hybrid time-

stepping scheme. b is a purely numerical parameter which is chosen to be small.

J.W. Fettig and S.S. Collis 261

At the time of this writing, this correction term is disabled since it seems the errors
introduced by “stepping up” the curvature result in an over-diffuse correction term here. Al-
ternative approaches to calculating this correction term, as well as the surface tension term in
the Stokes equation, need to be investigated. Integration by parts of both of these terms may
possibly eliminate the overly diffuse nature.

3.5. Notes on implementation in Sundance. The implementation of all of these gov-
erning equations in Sundance [5] is relatively straightforward. In order to re-use the linear
solve operators over the course of the time stepping iterations, we have created objects which
contain each of the governing equations separately. As each of the variable quantities in the
governing equations are updated, the corresponding pointers in the objects are switched to
point to the updated values. In this way, we construct the integrands and linear operators only
once, although the integrals are re-evaluated at each time step.

Sundance proved to be a valuable tool in the implementation of the weak forms of these
equations. It allowed for rapid development of the simulator, and immediately provides par-
allel support as well as access to Trilinos [3] solvers through either the Trilinos Solver Frame-
work (TSF), or through the Stratimikos interface. In both cases, the solver can be changed by
modification of an XML file.

4. Results on sample problems.

4.1. Capillary flow. For this problem, we model flow in a 2D rectangular channel with
an equilibrium contact angle of π/4 as a demonstration of the ability to model dynamic contact
lines. The viscosity is constant throughout the simulation. The phase field is initialized as

ψo =
1 + tanh

(
5−x
W

)
2

so that the initial contact angle is π/2, and the interface between the two fluids is centered
at x = 5. This deviation from equilibrium causes a flow driven by capillary forces. Surface
tension is also present.

Results are shown in Figure 4.1. The ψ = 0.5 contour line is overlaid on the plot of the
phase-field, and the u component of velocity is shown. The system is farthest from equilib-
rium at t = to, and so the velocity is strongest there. The fluid exhibits near total slip at the
wall at this time. The system moves towards the equilibrium contact angle and so the velocity
slows until it reaches an equilibrium between the contact angle stress and the surface tension
force.

4.2. Two part system with free surface. For this problem, we model the two part sys-
tem shown in Figure 4.2. Two embedded networks are flowing through the material: one
contains resin, the other contains hardener. A coating is placed on the top of the specimen
to seal the networks. When the specimen is placed into a 4-point bend, the coating cracks
allowing the two networks to release fluid into the crack plane. When the two fluids contact,
they react causing polymerization.

Figure 4.3 depicts a simulation of two channels, one with resin and the other with hard-
ener. There is a pressure forcing the fluids to eject into the crack plane, and we initialize φ to
be a Heaviside function with φ = 0.5 in between the two channels. We see hardening at the
interface of the two fluids, but this hardening is localized. It does not impede the flow.

5. Conclusions. A parallel simulator has been developed using Sundance for simulation
of microvascular self-healing flows. This simulator is capable of modeling free surface flows,
dynamic contact lines, and polymerizing flow in small scales. For future work, we will use
this code to optimize the physically tunable parameters.

262 Stokes Flow with Capillary Forces using Sundance

(a) t = to

(b) t = t1

(c) t = t2

F. 4.1. The phase-field, ψ, with contour ψ = 0.5 overlaid, and the u component of velocity at three different
time steps. Red indicates ψ = 1 and blue indicates ψ = 0. For u, red indicates greatest velocity and blue indicates
smallest velocity.

(a) Top view

(b) Side view

F. 4.2. The model 2 part epoxy system. The blue network contains resin and the red network contains
hardener. These two networks are completely segregated, and only mix in the crack plane (on the top surface in this
schematic).

J.W. Fettig and S.S. Collis 263

(a) t = to

(b) t = t1

(c) t = t2

F. 4.3. The v velocity component, the resin-hardener ratio φ, the u component of velocity at three different
time steps. and the viscosity µ at three different time steps. For v (µ), red indicates greatest velocity (viscosity) and
blue indicates smallest velocity (viscosity). For φ, red indicates φ = 1 and blue indicates φ = 0.

264 Stokes Flow with Capillary Forces using Sundance

6. Acknowledgments. The authors greatly appreciate the help and insight of Ross
Bartlett, Kevin Long, Judy Hill, and Bart van Bloemen Waanders on all things Sundance.

REFERENCES

[1] J. U. B, D. B. K,  C. Z, A continuum method for modeling surface tension, Journal of
Computational Physics, (1992), pp. 335–354.

[2] N. B  J. R. H, Streamline upwind/petrov-galerkin formulations for convection dominated flows
with particular emphasis on the incompressible navier-stokes equations, Computer Methods in Applied
Mechanics and Engineering, (1982), pp. 199–259.

[3] M. H, R. B, V. H. R. H, J. H, T. K, R. L, K. L, R. P, E. P,
A. S, H. T, R. T, J. W,  A. W, An Overview of Trilinos,
Tech. Report SAND2003-2927, Sandia National Laboratories, 2003.

[4] V. J, Slip with friction and penetration with resistance boundary conditions for the navier-stokes equations
– numerical tests and aspects of the implementation, Journal of Computational and Applied Mathematics,
(2002), pp. 287–300.

[5] K. L, Sundance User’s Manual, Tech. Report SAND2004-4793, Sandia National Laboratories, 2004.
[6] T. Q, X. W,  P. S, Molecular scale contact line hydrodynamics of immiscible flows, Physical

Review E, (2003).
[7] W. R W. E, Boundary conditions for the moving contact line, Physics of Fluids, (2007).
[8] M. B. R, Characterization of the time-temperature-viscosity behavior of curing b-staged epoxy resin,

Polymer Engineering and Science, 15 (1975).
[9] J. R  J. M, Romp reactivity of endo- and exo-dicyclopentadiene, Macromolecules, 35 (2002),

pp. 7878–7882.
[10] J. R, N. S, S. W,  J. M, The chemistry of self-healing polymers, Education in Chemistry,

42 (2005), pp. 130–132.
[11] J. A. S, Level set methods and fast marching methods: evolving interfaces in computational geometry,

fluid mechanics, computer vision, and materials science, Cambridge University Press, 1999.
[12] F. S, Finite element analysis of the compressible Euler and Navier-Stokes equations, PhD thesis, Stan-

ford University, 1989.
[13] P. R. S, R. D. M,  M. M. R, Spectral methods for the navier-stokes equations with one

infinite and two periodic directions, Journal of Computational Physics, (1991), pp. 297–324.
[14] Y. S  C. B, Sharp interface tracking using the phase-field equation, Journal of Computational

Physics, (2007), pp. 626–653.
[15] T. E. T  Y. O, Finite element stabilization parameters computed from element matrices and

vectors, Computer Methods in Applied Mechanics and Engineering, (2000), pp. 411–430.
[16] K. T. personal communication, 2006.
[17] S. W, N. S, P. G, J. M, M. K, S. S, E. B,  S. V, Auto-

nomic healing of polymer composites, Nature, (2001), pp. 794–797.

CSRI Summer Proceedings 2007 265

CONTINUATION FOR ATOMIC AND
MOLECULAR FLUIDS USING LOCA

KELLY I. DICKSON∗, ANDREW G. SALINGER†, B. MONTGOMERY PETTITT‡, MARCELO
MARUCHO§, AND C.T. KELLEY¶

Abstract. We wish to obtain accurate structural and thermodynamic properties of both atomic and molecular
fluids. Current equations used to describe such quantities have significant shortcomings. In [8], Marucho and Pettitt
propose an improvement upon the existing theory. We present a computational approach to solving this new theory
and enable simulations of fluid properties as a function of fluid densities. This analysis can be accomplished through
a continuation study. We present continuation results for atomic fluids using the software package LOCA in Trilinos,
a Sandia National Laboratories solver framework. Further, we discuss how to approach a similar continuation study
for molecular fluids.

1. Introduction. Many physical systems that surround us are best described on an
atomic or molecular level. In fact, American physicist Richard Feynman said in 1963, “Every-
thing that living things do can be understood in terms of the jiggling and wiggling of atoms.”
One way of analyzing molecular properties and interactions is known as integral equation
theory. Often one is interested in molecular structure and thermodynamic properties of a
system at thermodynamic equilibrium (time independent). Integral equation theorists seek
to derive governing equations that yield more accurate structural and thermodynamic infor-
mation with less computation than, say, simulation (molecular dynamics). Here we focus on
improving integral equation theory to recover molecular structure and thermodynamic prop-
erties through analyzing closure equations. In particular, we discuss a new closure equation
recently developed [8] by Marcelo Marucho and B.M. Pettitt of the University of Houston’s
Department of Chemistry.

In the next section, we will explain the terms “structure” and “thermodynamic proper-
ties” by considering atomic and molecular fluids. We will introduce integral equation theory
and closure equations by first discussing atomic fluids and then later extending the theory
to molecular fluids. Along the way, we will point out some crucial deficiencies in existing
equations found in the literature. This will motivate the need for improvements in integral
equation theory, and in particular, the one presented in [8]. We then relate the analysis of
the molecular theory to numerical continuation. Specifically, we introduce the continuation
problem of interest within the context of fluids. We discuss a new implementation for this
continuation problem using software developed at Sandia National Laboratories. Finally, we
present some current results and the future aims of this project.

2. Introduction to Atomic and Molecular Fluids. This section describes some prop-
erties of fluids and why they are important. Later, we will focus on how to obtain these
properties.

As mentioned earlier, integral equation theory is a route to uncovering structural and
thermodynamic properties of fluids. The two general categorizations of fluids we will discuss
are atomic fluids and molecular fluids. Atomic fluids are ones that are comprised of only
single atoms while molecular fluids are made up of molecules (groups of atoms bonded to-
gether). In particular, we will consider homogeneous atomic and molecular fluids, i.e. fluids
that only contain one kind of atom or one kind of molecule. For molecular fluids, we focus on

∗North Carolina State University, kidickso@ncsu.edu
†Sandia National Laboratories, agsalin@sandia.gov
‡University of Houston, pettitt@uh.edu
§University of Houston, marucho@kitten.chem.uh.edu
¶North Carolina State University, tim kelley@ncsu.edu

266 Continuation for Fluids

diatomic (molecules made up of only two bonded atoms) fluids. When convenient, we will
use the term “particle” to refer to either an atom or molecule.

Integral equation theory is useful for finding structural and thermodynamic properties of
particle fluids at equilibrium. In particular, it is useful for finding pair correlation functions
which we will denote g(r). Here, r represents the distance between two particles in a fluid.
The pair correlation function, g(r), is the relative probability of finding a particle at a distance,
r, from the reference particle (at r = 0) compared to that same probability for an uncorrelated
fluid. Figure 2 is an example of what a pair correlation function may look like. A general
characterization of a correlation function is that there is an exclusion region at small r where
the particles are prohibited from overlapping, followed by an oscillatory region where the
particles pack around the reference particle which then decays to an uncorrelated fluid. The
way particles in a fluid are correlated is known as the “structure” of a fluid.

F. 2.1. Pair correlation function g(r) for a particular density and temperature

Additionally, it is desired to predict thermodynamic properties associated with a fluid.
We can relate properties of atoms and molecules on a microscopic level to properties of ma-
terials that we observe in everyday life on a macroscopic level through thermodynamics.
Thermodynamics are the effects of changes in conditions such as temperature, pressure on
important fluid properties such as compressibility, density, excess adsorption, etc. of a phys-
ical system. Many thermodynamic quantities are functions of the pair correlation function,
g(r). That is, the structure of g(r) gives rise to many thermodynamic properties of interest.

To understand the equations that describe particle fluids, we need to discuss a few more
types of correlation functions. The first is called the direct correlation function which we
will denote c(r). The function c(r) represents the direct correlation between two particles in a
fluid. This is opposed to t(r), called the indirect correlation function, which also describes the
correlation between two particles in a fluid, but takes into consideration that the two particles
are surrounded by other particles of the same type. That is, t(r) measures implicit correlations

K.I. Dickson, A.G. Salinger, B.M. Pettitt, M. Marucho, C.T. Kelley 267

due to the presence of other particles in the fluid. Then the total correlation function, denoted
h(r), is the direct correlation plus indirect correlation. In other words, h(r) = c(r) + t(r).
Finally, the pair correlation function of interest is given by g(r) = h(r) + 1.

With these definitions, we will now introduce the underlying integral equation for atomic
fluids studied in this work.

3. Atomic Fluids. One theory that has been commonly used to predict structural, and
therefore thermodynamic, properties of atomic fluids is the Ornstein-Zernike (OZ) equation
[5, 2].

3.1. Integral Equation Theory for Atomic Fluids. The OZ equation is an integral
equation with two unknown fields. These are the total correlation function h(r) and the direct
correlation function c(r), as defined in §2. The OZ equation is given by

h(r) = c(r) + ρ(h ∗ c)(r) (3.1)

where

(h ∗ c)(r) =
∫
<3

c(‖r − r′‖)h(‖r′‖)dr′.

Here,
• r ∈ <3,
• r = ‖r‖ is the distance of r from the origin,
• ρ is density, and
• h(r), c(r) ∈ C[0,∞) are the unknowns.

In order to resolve (3.1) and recover the pair correlation function g(r), we need to solve
for the two unknowns h(r) and c(r). To do this, we need one more equation that relates the two
unknowns in order to close the system. This equation is called a closure equation, or better
yet, a closure approximation. Most closure equations involve an infinite sum of multidimen-
sional integrals that are difficult to evaluate, aside from the fact there are infinitely many. Thus
closure equations must be approximated, often by truncating this infinite sum in some way.
While there are some cases in which common closure approximations yield an accurate pair
correlation function, they are notorious for displaying thermodynamic inconsistencies. This
occurs when two different formulations for a thermodynamic quantity produce two different
answers when they should be the same. This is exactly the kind of inconsistency we wish to
avoid since, as earlier discussed, the accurate prediction of thermodynamic properties is the
purpose of simulating the system.

3.2. Closure Equations for Atomic Fluids. Here we define two common yet insuffi-
cient closure equations used to find the the solutions h(r) and c(r) to the OZ equation (3.1).
Then we propose a new closure approximation developed in [8] for atomic fluids.

The hypernetted chain equation [5, 2] (HNC) is one popular closure approximation used
to resolve (3.1), however it can produce inaccurate pair correlation functions and/or thermo-
dynamic inconsistencies. The HNC approximation is given by

exp(−u(r)/(T KB) + h(r) − c(r)) − h(r) − 1 = 0, 0 ≤ r ≤ ∞.

In this equation, u(r) is called the pair potential between particles. Throughout this paper,
we will consider only the Lennard-Jones potential which describes both an attractive and
repulsive interaction between particles. It is given by

u(r) = 4ε
((
σ

r

)12
−

(
σ

r

)6
)
. (3.2)

268 Continuation for Fluids

Additionally,
• T is absolute temperature (Kelvin),
• KB is Boltzmann’s constant (kcal/Kelvin),
• ε is the depth of the attractive interaction (kcal/mol), and
• σ is the width of the repulsive core (Angstroms).

A common alternative to the HNC closure is the Percus-Yevick [5, 2] (PY) closure given
by

exp(−βu(r) + ln(h(r) − c(r) + 1)) − h(r) − 1 = 0.

Due to the structural and thermodynamic inconsistencies resulting from the use of these
closure equations, Marcelo Marucho and B.M. Pettitt of the University of Houston have de-
veloped a new closure equation that “interpolates” between the HNC and PY closures [8].
The new interpolating closure for atomic fluids, which we will denote IC, is given by

exp(−βu(r))
(
−a + (a + 1) exp

(
h(r) − c(r)

a + 1

))
− h(r) − 1 = 0 (3.3)

where the additional parameter a is chosen to minimize excess chemical potential (free en-
ergy), µ(h(r), c(r), a) which we will define momentarily. Note that when a = 0, IC reduces
to HNC. Additionally, when a → ∞, the IC equation becomes the PY equation. Thus we
can think of IC as considering the family of closures, parameterized by a, formed by “inter-
polating” between HNC and PY and choosing the one that minimizes free energy. The idea
of minimizing free energy comes from first principles in physics. Note that, in comparison
to the HNC and PY closures, this closure adds an optimization condition to the governing
equations.

The excess chemical potential µ is the key thermodynamic quantity in this derivation
since it is minimized when the system is in thermodynamic equilibrium. It can be approxi-
mated with the formula [8]

βµ(h(r), c(r), a) ≈ −ρ
∫
{h(r) − (h(r) − c(r))I(h(r), c(r), a)}dr (3.4)

where

I(h(r), c(r), a) = {[h(r) + 1]ln[y(r)/a] + ln[a]+
[h(r)(a + 1)/(h(r) − c(r))]Re[li2(y(r)/a + 1) − li2((a + 1)/a)]}/(h(r) − c(r)).

Here, li2 denotes the dilogarithm function [1] and y(r) = −a+ (a+1) exp[(h(r)−c(r))/(a+1)].
Marucho and Pettitt implement IC together with OZ for atomic fluids in [8]. Their find-

ings result in more accurate structural and thermodynamic properties than the HNC closure
yields. Notice at this time that the OZ equation (and IC) depends on the bulk fluid density
ρ. It is possible that one may wish to obtain accurate information for a fluid with a particular
density. In this case, one can plug in the density value of interest into the OZ equation and use
IC to obtain the pair correlation function and other information about the system. However,
often one is interested in how the structure of the fluid changes as the density changes. The
computational process for understanding a system’s solution behavior as a parameter, such
as density, varies is known as numerical continuation [6]. We now briefly discuss numerical
continuation and its application to the OZ and IC equations.

K.I. Dickson, A.G. Salinger, B.M. Pettitt, M. Marucho, C.T. Kelley 269

3.3. Numerical Continuation. As previously mentioned, in order to solve the OZ equa-
tion together with the IC closure relation, one must specify a parameter value for density, ρ.
However it is possible to get a sense of how solution behavior (correlation functions) changes
as density values vary. This process is called numerical continuation [6].

Consider a set of nonlinear, parameter dependent equations of the form

G(u, λ) = 0 (3.5)

where u ∈ <N is the unknown and λ ∈ < is a real number parameter (although in gen-
eral, there may be more than one parameter). The idea of numerical continuation is to find
solutions u corresponding to various values of λ and to investigate the solution behavior as
λ varies. In particular, one is often interested in detecting solution paths that undergo bi-
furcations. In molecular theory, the common bifurcations encountered correspond to phase
transitions[9]. In the context of the OZ equation, we can think of correlation functions h(r)
and c(r) as the unknown u and the parameter ρ as λ. G is then like the OZ equation paired with
the IC closure approximation. We would like to understand what happens to the solutions h(r)
and c(r) as the parameter ρ varies.

There are many established numerical techniques and software dedicated to solving nu-
merical continuation problems like the one just described. Trilinos (overseen by Mike Her-
oux, 1414) is a collection of open source software packages written in C++, each one de-
signed by a Sandia National Laboratories development team. The packages may stand alone,
but are designed to integrate with one another. NOX (Nonlinear Object-Oriented Solutions)
is the nonlinear solver package headed by Roger Pawlowski (1416). Built upon NOX is a
package called LOCA (Library of Continuation Algorithms) developed by Eric Phipps and
Andrew Salinger (1416). LOCA and NOX are the primary packages responsible for the re-
sults presented in this paper. For more on Trilinos including download information, visit
http://trilinos.sandia.gov.

We now turn our focus to implementing continuation in density for the OZ and IC equa-
tions with the help of Trilinos.

3.4. Continuation for the OZ and IC Equations for Atomic Fluids. We want to solve
the OZ and IC equations and analyze the solutions for various density values. This means
that for each density value ρ, we must resolve the optimization problem of minimizing the
excess chemical potential µ(h(r), c(r), a) with respect to the interpolation parameter a. With
each continuation step, in order to minimize (3.4) with respect to a, one could simply run a
suitable optimization scheme such as a descent or simplex method. Then once the minimizer
a is found, it can be plugged into the closure equation to solve for h(r) and c(r) as described
in [3]. While this is the most intuitive approach, there may be a sufficiently accurate way to
minimize the free energy by simply tweaking the continuation problem a bit.

The idea, proposed in this work is to augment our main equation (3.5) with additional
equations so that when the new system is solved, we will approximate the value of a that
minimizes µ(h(r), c(r), a) and simultaneously solve the OZ equation paired with IC. Then the
continuation problem will be applied to this new system of equations.

We will formulate the optimization problem to require a first order difference approxima-
tion to the derivative of µ(h(r), c(r), a) with respect to a to be small. That is, we wish to find
a that makes dµ/da = 0 which signifies that we are at a critical point. Thus if µ(h(r), c(r), a)
behaves nicely (and we assume it does), this will imply we are at a minimum.

The new system is formulated as follows. We arrange (3.1) and (3.3) into the form G = 0
as done in [3]. We define u = (h, c) and consider a to be another unknown. Let x = (u, v, a)
be the new unknown vector (where v is a vector of the same length as u). Then instead of
solving G(u) = 0, solve

270 Continuation for Fluids

F(x) =

 G(u, a)
G(u + εv, a + ε)

[µ(u + εv, a + ε) − µ(u, a)]/ε

 =
 0

0
0

 .
The first two equations specify that there are two nearby points of the form (u, a) on the curve
G = 0 that are just separated by a perturbation ε in the parameter a. The third equation says
that the first order approximation to the derivative of µ at the first point is small, meaning
we’re at a minimum. Finding the x that satisfies F(x) = 0 is the minimization problem. To
perform the system analysis, one then applies continuation in ρ on

F(x, ρ) = 0. (3.6)

We have just described a way to implement continuation for the OZ and IC equations
for atomic fluids. While some mathematical analysis needs to be done on this approach, it is
expected that one can obtain sufficiently accurate structural and thermodynamic properties of
an atomic fluid for various parameter values using this technique. We put these ideas to the
test by performing a continuation study in ρ while holding T = 1.827 fixed. We truncate the
integral in OZ at L = 9.0, and are unable to continue past ρ = .7 where the continuation run
started to stall. In Figure 3.1, we plot ρ against the weighted L1 norm of h (left) and weighted
L1 norm of c (right). The weighted L1 norm is given by

||z||1 = (1/N)
N∑

i=1

|zi|

for a vector z of length N. The L1 norm is merely a numerically convenient metric of the
solution, yet in analyzing these results from a scientific standpoint, one would likely plot the
solutions h(r) and c(r) as a function of some physically meaningful quantity.

In order to verify that these solution branches are behaving as expected, we display a
solution profile for both h(r) and c(r) at a particular value of ρ, in this case, ρ ≈ .522 (as
indicated by the arrows in Figure 3.1). We were able to match these solution profiles with
previously known solutions to OZ. These h(r) and c(r) solution profiles were done with other
values of ρ, although we only display one here. These results give us reason to believe that
solving OZ paired with IC as described in this chapter is a promising approach.

4. Extension to Molecular Fluids. So far we have described a way to recover accurate
structural and thermodynamic properties of atomic fluids with varying densities using the
“interpolating” closure. We now extend this idea to more complicated molecular fluids. First,
we present the “analog” of the OZ and IC equations for molecular fluids.

4.1. Integral Equation Theory for Molecular Fluids. Integral equation theory for
molecular fluids is more complex than the OZ equation for atomic fluids. As mentioned
in §2, we will discuss the theory for specifically for diatomic molecular fluids. An integral
equation theory for diatomic molecular fluids, and the one considered here, was developed
by Dyer, Perkyns, and Pettitt [4] and was found to be an improvement upon existing theories
such as PISM (proper interaction site model)[7]. The equations are in matrix-product form
and given in Fourier space. The “hat” notation denotes the Fourier transform and k is the
independent variable in Fourier space. The molecular fluid equations are given by

Ĥ(k) = Ĉ(k) + [Ĉ(k) + Ŝ(k)]ρ̄m[Ĥ(k) + Ŝ(k)].

K.I. Dickson, A.G. Salinger, B.M. Pettitt, M. Marucho, C.T. Kelley 271

F. 3.1. Solutions h(r) and c(r) as a function of ρ for T = 1.827

Here,

ρm =

(
ρ η
η 0

)
, ρ̄m =

(
ρm 0
0 ρm

)
, Ŝ(k) =

(
0 s(k)

s(k) 0

)
, s(k) = η−1

(
0 0
0 sin(kL)

kL

)
,

where η is called the screened density and L is the bond length between atoms in the molecule.
The notations ρm and ρ̄m differentiate the matrix forms of ρ and the regular scalar ρ. The
unknowns here are the matrix entries of

Q(k) =
(
Q11(k) Q12(k)
Q21(k) Q22(k)

)
,Qαγ(k) =

(
qo
αγ(k) qr

αγ(k)
ql
αγ(k) qb

αγ(k)

)
,

where Q represents either H or C. The subscript α = 1, 2 represents one type of atom in the
diatomic molecule and β = 1, 2 the other so that Hαγ or Cαγ represents a correlation between
atom α in one molecule and atom β in another. Finally, the superscripts o, r, l, and b represent
further classifications of each atom-atom correlation.

Although in matrix form, we still have two unknowns as in the atomic case, H and C.
Thus we must close the system with a closure equation. As for atomic fluids, the popular HNC
and PY closures for molecular fluids result in structural and thermodynamic inconsistencies.
Thus we seek a new closure that will remedy these effects, namely, an “interpolating closure”
for molecular fluids.

4.2. Interpolating Closure for Molecular Fluids. In [8], Marucho and Pettitt introduce
the molecular “analog” of the the interpolating closure presented in §3.2. The interpolating

272 Continuation for Fluids

closure equations for molecular fluids are given by

co
αγ(r) = −aoe−βu(r) + (1 + ao)e[−βu(r)+(ho

αγ(r)−co
αγ(r))/(1+ao)] − 1 − ho

αγ(r) + co
αγ(r),

cr
αγ(r) =

(1 + ao)
(1 + ar)

(hr
αγ(r) − cr

αγ(r))e[−βu(r)+(ho
αγ(r)−co

αγ(r))/(1+ao)] − hr
αγ(r) + cr

αγ(r),

cl
αγ(r) =

(1 + ao)
(a + ar)

(hl
αγ(r) − cl

αγ(r))e[−βu(r)+(ho
αγ(r)−co

αγ(r))/(1+ao)] − hl
αγ(r) + cl

αγ(r),

cb
αγ(r) = (1 + ao)

 (hb
αγ(r) − cb

αγ(r))

(1 + ab)
+

(hr
αγ(r) − cr

αγ(r))(hl
αγ(r) − cl

αγ(r))

(1 + ar)2

×
e[−βu(r)+(ho

αγ(r)−co
αγ(r))/(1+ao)] − hb

αγ(r) + cb
αγ(r).

Notice there are now three interpolation parameters for the molecular case, ao, ar, and
ab. Once again, u(r) is the Lennard-Jones pair potential between particles and β is the inverse
of temperature times Boltzmann’s constant. Similar to §3.2, we now must choose the values
of ao, ar, and ab to minimize the approximate excess molecular chemical potential given by

βµ(hαγ, cαγ, ao, ar, ab) ≈ −ρ
∑
αγ

∫
{hαγ − I

[
ho
αγ(r), co

αγ(r), ao
]
× {ho

αγ(r) − co
αγ(r)+

(1 + ao)
[
hr
αγ(r) − cr

αγ(r) + hl
αγ(r) − cl

αγ(r)
]

(1 + ar)
+

(1 + ao)
[
hb
αγ(r) − cb

αγ(r)
]

2(1 + ab)
}

−
hr
αγ

[
hl
αγ(r) − cl

αγ(r)
]

(1 + ar)
−

[
hr
αγ(r) + hl

αγ(r) + hb
αγ(r)

] [
ho
αγ(r) − co

αγ(r)
]

2(1 + ao)
}dr,

where I(ho
αγ(r), co

αγ(r), ao) is obtained by replacing h(r), c(r), and a by ho
αγ(r), co

αγ(r), and ao,
respectively in the formulation for I in §3.2.

Now the goal is to solve the matrix equations and molecular interpolating closure just
defined for H and C. This is done in [8] for a few values of density. However, we wish
to do a continuation study for molecular fluids as was done in §3.4. Thus the next step is to
formulate a problem that will allow a continuation study in ρwhile solving the new molecular
equations, keeping in mind that we must now minimize the molecular free energy with each
continuation step.

4.3. Current Work for Molecular Fluids. As done for atomic fluids in §3.4, we can
formulate a new continuation problem for molecular fluids that will resolve the optimization
problem from §4.2. We can do this by requiring a first order difference approximation to
dµ/dao = dµ/dar = dµ/dab = 0. Since we now have three interpolation parameters to re-
solve, the continuation problem in (3.6) grows in size considerably. This idea of minimizing
the excess chemical potential for molecular fluids using a first order difference approxima-
tion of µ is currently being implemented. The hope is to mimic the continuation strategy of
§3.4 to obtain accurate structural and thermodynamic properties of molecular fluids using the
molecular interpolating closure for various densities.

5. Conclusions. Obtaining accurate structural and thermodynamic properties of fluids
requires both integral equation theory and closure equations. Common closure equations from
literature can result in inaccurate pair correlation functions and thermodynamic inconsisten-
cies. Marucho and Pettitt [8] describe a new “interpolating” closure equation that improves
upon existing closure equations for both atomic and molecular fluids, which adds an opti-
mization constraint to the previous theories. We implement this new closure equation with a

K.I. Dickson, A.G. Salinger, B.M. Pettitt, M. Marucho, C.T. Kelley 273

formulation that removes the optimization constraint in favor of augmenting the original sys-
tem with additional equations. The result is a numerical procedure conducive to performing
a continuation study in density for atomic fluids. Currently, we are working to do the same
for molecular fluids. This will allow one to understand critical behavior of fluids that undergo
density changes.

REFERENCES

[1] M. A  I. S, Handbook of Mathematical Functions, Dover, New York, 1972.
[2] P. A, Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation, Academic Press,

Inc., London, 2002.
[3] K. D, C. T. K, B. P, A. S,  J. H, Distributions of atoms in fluids using LOCA,

Tech. Report SAND 2006-6564P, Sandia National Laboratories, October 2006.
[4] K. D, J. P,  B. P, Effective density terms in proper integral equations, J. Chem. Phys., 123

(2005), p. 204512.
[5] J. P. H  I. R. MD, Theory of Simple Liquids, Academic Press, Inc., London, second ed., 1986.
[6] H. K, Lectures on Numerical Methods in Bifurcation Theory, Tata Institute of Fundamental Research,

Lectures on Mathematics and Physics, Springer-Verlag, New York, 1987.
[7] L. L  D. B, J. Chem. Phys., 102 (1995), p. 5427.
[8] M.M  B. M. P, An optimized theory for simple and molecular fluids, J. Chem. Phys., 126

(2007), pp. 124107–124107–9.
[9] A. S  L. F, Rapid analysis of phase behavior with density functional theory, Part I: Novel

numerical methods, J. Chem. Phys, 118 (2003), pp. 7457–7465.

CSRI Summer Proceedings 2007 274

EVALUATION OF MAGNETIC VECTOR POTENTIAL IN 2D AND 3D MODELS

KENNY CHOWDHARY∗ AND ALLEN C. ROBINSON†

Abstract. In this paper, we discuss the derivation and implementation of a fast and accurate method for the eval-
uation of the magnetic vector potential associated with a circular loop current source field. We provide a quadratic
interpolation polynomial to evaluate the vector potential for field points inside the loop. For field points outside the
loop we use a rapidly converging method for elliptic integrals to evaluate the vector potential. We implemented this
functionality into the ALEGRA code in order to provide 2D and 3D circular loop source fields.

1. Introduction. ALEGRA is a multi-material multi-physics shock hydrocode designed
in an ALE framework. ALE (Arbitrary Lagrangian-Eulerian) is a numerical method that
incorporates both Lagrangian meshes moving with the material as well as remeshing and
remapping techniques to provide for meshes that must be smoothed or remain stationary.
ALE begins with a Lagrangian method, which utilizes a moving mesh that follows the mate-
rial. Next, when the elements become too distorted, a remeshing and remapping is performed.
This sequence is repeated many times as the simulation proceeds. ALEGRA can be used to
study problems in magnetohydrodynamics (MHD), which is the study of electrically con-
ducting fluids, such as plasma. For example, ALEGRA can be used to study various aspect of
experiments conducted on the Z-machine at Sandia National Laboratories such as magneti-
cally driven flyer plates and wire-array implosions [3, 4]. In particular, ALEGRA can be used
to study how electrically conducting fluids or solids move given an electromagnetic source
term derived from a current source. In this paper, we will be concerned with magnetics prob-
lems for which we desire a source field generated by a circular loop current. For instance,
the circular loop current is clearly applicable to a coil-gun geometry. We will accurately and
efficiently derive the steady state magnetic vector potential source field that is induced by a
circular loop current. This source field is then used as a forcing function and is one method
to drive the magnetics diffusion portion of the ALEGRA computation. In particular, since the
divergence of the magnetic flux density equals zero or ∇ · B = 0 then we must have a vector
potential representation, A, where B = ∇×A. The reduced form of Ampere’s Law, ∇×H = J,
Faraday’s Law in the form E = − ∂A

∂t , Ohm’s law, J = σE, where σ is the conductivity, and
B = µ0H, where µ0 is the void permeability can be combined to obtain

∇ × (
∇ × A
µ0

) = −σ
∂A
∂t
+ Js. (1.1)

We define a source vector potential as a solution of

∇ × (
∇ × As

µ0
) = Js. (1.2)

The vector potential will respond to this given source potential and begin to diffuse throughout
the conducting region at a rate determined by the conductivity.

2. Circular Loop Current. For a current loop of very small cross section in an infinite
space, it can be shown that

As =
µ0I
4π

∮
dl
|r|

(2.1)

∗Brown University,Division of Applied Mathematics, kchowdhary@brown.edu
†Sandia National Laboratories, acrobin@sandia.gov

K. Chowdhary and A.C. Robinson 275

and

Bs(r) =
µ0I
4π

∫
dl × r̂
|r|

, (2.2)

where Bs is a vector field as a function of the field point r, r̂ is the unit vector from the
evaluation point on the loop to the field point r, and dl is the change in length along the loop
(i.e. dl = dxî + dyĵ + dzk̂)[2]. We will use this equation to analytically derive the source
magnetic vector potential, As, given a circular loop current.

3. Magnetic Vector Potential for a Circular Loop.

3.1. Deriving the Integral. We can rewrite equation (2.1)

As =
I

4π

∮
dl
rpq

where rpq = |rp − rq|, rq is the position of the source current differential element, and rp is a
point in space.

Let us calculate the magnetic vector potential produced by a circular loop current with
radius a. In cylindrical coordinates we have

rp = r cos θî + r sin θĵ + zk̂
rq = a cosϕî + a sinϕĵ + zqk̂.

x

y

z

−x

−y a

rp

rq

z

r

ν

ψ

θ

R

F. 3.1. Illustration of the circular loop and the field point, rp.

Then,

|rp − rq| = r2 + a2 − 2ra cos(θ − ϕ) + (z − zq)2

Let us assume zq = 0, θ = 0. Due to symmetry of the system, this assumption will allow us to
calculate the vector potential at any point in space.

Next, for ease of notation, let z2 + r2 = ν2. Therefore, the above equation becomes

r2
pq = ν

2 + a2 − 2ra cosϕ.

Furthermore, we can write r = ν sinψ, where ψ is the angle between rp and the z axis. Thus,

r2
pq = ν2 + a2 − 2aν sinψ cosϕ . (3.1)

276 Evaluation of Magnetic Vector Potential

The path of integration is simply the circle, l = a cosϕî + a sinϕĵ. Thus, As becomes

As =
µ0I
4π

∫ π

−π

1
rpq

(
−a sinϕî + a cosϕĵ

)
dϕ. (3.2)

Since sinϕ is odd and rpq is even, the above equation simplifies to

As =
µ0I
2π

∫ π

0

a cosϕ√
ν2 + a2 − 2aν sinψ cosϕ

ĵdϕ. (3.3)

If we need the vector potential in a direction other than ϕ = 0, we can simply perform a
change of basis.

3.2. Evaluating the Integral. Let us rewrite equation (3.3) into a more familiar form.
First, let us perform a change of variables where t = ϕ/2. Then, dt

dϕ =
1
2 and we get

I
2π

∫ π

0

a cosϕ√
ν2 + a2 − 2aν sinψ cosϕ

dϕ =
I
π

∫ π/2

0

a cos 2t√
ν2 + a2 − 2aν sinψ cos 2t

dt.

Substituting in cos 2t = cos2 t − sin2 t, the above equation becomes

RHS =
I
π

∫ π/2

0

a cos 2t√
ν2 + a2 − 2aν sinψ(cos2 t − sin2 t)

dt

=
I
π

∫ π/2

0

a cos 2t√
(ν2 + a2)(cos2 t + sin2 t) − 2aν sinψ(cos2 t − sin2 t)

dt

=
aI
π

∫ π/2

0

cos 2t√
(ν2 + a2 − 2aν sinψ) cos2 t + (ν2 + a2 + 2aν sinψ) sin2 t

dt.

Now, let b =
√
ν2 + a2 − 2aν sinψ, c =

√
ν2 + a2 + 2aν sinψ to get

I(b, c) =
aI
π

∫ π/2

0

cos 2t√
b2 cos2 t + c2 sin2 t

dt. (3.4)

This integral is called an elliptic integral, due to presence of
√

b2 cos2 t + c2 sin2 t, which is
the radius of an ellipse in polar coordinates, centered at the origin and where t is the angular
coordinate. The study of evaluating such integrals is well known and is discussed in [5].1

To simplify equation (3.4) even further, we can write the numerator of the integrand as a
function of the denominator. Let us call R2 = b2 cos2 t + c2 sin2 t. We want to be able to write
the numerator as some linear combination of R2. That is, we want to find α0 and α2 such that
α0 + α2R2 = cos2 t. We know that cos 2t = cos2 t − sin2 t and 1 = cos2 t + sin2 t. So after after
some algebra we get

α2 =
2

b2 − c2 , α0 = −
b2 + c2

b2 − c2 .

Therefore, (3.4) becomes

I(b, c) =
aI
π

∫ π/2

0

H(R)
R

dt (3.5)

1Up and through section 3.2.3 is a detailed explanation of pages 254-260 in [5].

K. Chowdhary and A.C. Robinson 277

where H(R) = α0 + α2R2.
Now let us rewrite (3.4) in terms of dR. First, we have

dR
dt
=

(c2 − b2)(sin t cos t)
R

.

Notice that this derivative is negative for b < a since sin t and cos t are both positive on [0, π2]
and so is R. Then, equation (3.5) turns into∫ π/2

0

H(R)
R

dt =
∫ π/2

0

H(R)
(c2 − b2)(sin t cos t)

dR
dt

dt.

Furthermore, we can rewrite the denominator as (R2 − c2)(b2 − R2). Thus,√
(R2 − c2)(b2 − R2) = |(b2 − c2)| sin t cos t

since sin t and cos t are positive on our domain. Furthermore, |(b2 − c2)| sin t cos t = −(b2 −

c2) sin t cos t = (c2 − b2) sin t cos t and if we let ∆(R) =
√

(R2 − c2)(b2 − R2) then∫ π/2

0

H(R)
(c2 − b2)(sin t cos t)

dR
dt

dt =
∫ c

b

H(R)
∆(R)

dR (3.6)

where R(0) = b,R(π2) = c. If b > c then ∆(R) = (b2 − c2) sin t cos t,and we get∫ π/2

0

H(R)
(c2 − b2)(sin t cos t)

dR
dt

dt =
∫ b

c

H(R)
∆(R)

dR. (3.7)

In general, we have ∫ π/2

0

H(R)
R

dt =
∫ b∨c

b∧c

H(R)
∆(R)

dR,

where ∆(R)=
√

(R2 − c2)(b2 − R2) > 0.

3.2.1. Invariance of
∫ c

b
H(R)
∆(R) dR. Let us show that equation (3.6) is invariant under the

transformation b → b+c
2 , c →

√
bc. Consider the change of variables given by R̂ $ 1

2 (R +
bc/R). Assume c > b so that our integral is

∫ c
b

H(R)
∆(R) dR (the case for c < b is similar). Notice

that for R : [b, c], R̂ is not injective. So we have to be careful when performing a change of
variables.

We can rewrite the equation for R̂ as R2 − 2R̂R + bc = 0. Then the equations for R in

terms of R̂ become R = R̂ +
√

R̂
2
− bc and R̂ −

√
R̂

2
− bc. By implicit differentiation, we get

dR
dR̂
=

R
R − R̂

= ±
R√

R̂
2
− bc

.

Define b1 =
b+c

2 , c1 =
√

bc. A little algebra shows that ∆2(R) = 4R2
(
b2

1 − R̂2
)

. If we define
∆̂2(R̂) $ (R̂2 − c2

1)(b2
1 − R̂2) then

dR
dR̂
= ±R√

R̂2−bc
= 1

2

√
4R2(b2

1−R̂2)
√

(R̂2−c2
1)(b2

1−R̂2)
= ± ∆

2∆̂
.

278 Evaluation of Magnetic Vector Potential

Thus, dR̂
dR = ±

2∆̂
∆

.
Rewriting our (3.6), we get∫ c

b

H(R)
∆(R)

dR =
∫ √

bc

b

H(R)
∆(R)

dR +
∫ b

√
bc

H(R)
∆(R)

dR . (3.8)

For R : [b,
√

bc] we use the transformation R̂ −
√

R̂
2
− bc and for R : [

√
bc, c] we use

the transformation R̂ −
√

R̂
2
− bc. Then,

∫ √
bc

b

H(R)
∆(R)

dR = −
∫ √

bc

b+c
2

H(R̂ −
√

R̂
2
− bc)

∆(R)
∆

2∆̂
dR̂

=

∫ b+c
2

√
bc

1
2 H(R̂ −

√
R̂2 − bc)

∆̂(R̂)
dR̂.

and ∫ c

√
bc

H(R)
∆(R)

dR =
∫ b+c

2

√
bc

1
2 H(R̂ +

√
R̂2 − bc)

∆̂(R̂)
dR̂.

So now (3.6) becomes

∫ c

b

H(R)
∆(R)

dR =
∫ b+c

2

√
bc

1
2

(
H(R̂ +

√
R̂2 − bc) + 1

2 H(R̂ −
√

R̂2 − bc
)

∆̂(R̂)
dR̂ (3.9)

If we define

H1(R1) $
1
2

(
H(R1 +

√
R2

1 − bc) +
1
2

H(R1 −

√
R2

1 − bc)
)
, b1 =

b + c
2

, c1 =
√

bc

then (3.9) becomes ∫ c

b

H(R)
∆(R)

dR =
∫ c1

b1

H1(R1)
∆(R1)

dR1.

Remember that we showed
∫ π/2

0
H(R)

R dt =
∫ c

b
H(R)
∆(R) dR, for H continuous. Hence,∫ π/2

0
H(R)

R dt =
∫ c

b
H(R)
∆(R) dR =

∫ c1

b1

H1(R1)
∆(R1) dR1 =

∫ π/2
0

H1(R1)
R1

dt.

Thus, the elliptic integral we started with is invariant under what is called the arithmetic-
geometric transformation: b→ b1, c→ c1. Now, if we define

Hn(Rn) $
1
2

(
Hn−1(Rn +

√
R2

n − bc) +
1
2

Hn−1(Rn −

√
R2

n − bc)
)
,

where bn =
bn−1+cn−1

2 , cn =
√

bn−1cn−1 we get∫ π/2

0

H(R)
R

dt = lim
n→∞

∫ π/2

0

Hn(Rn)
Rn

dt.

K. Chowdhary and A.C. Robinson 279

3.2.2. Elliptic Integrals and the Arithmetic-Geometric Mean. Let H(R) be a polyno-
mial over the reals. (i.e. H(R) = Σp

j=0α jR j where α j ∈ R). Then,

∫ π/2

0

H(R)
R

dt =
∫ π/2

0
lim
n→∞

∑p
j=0 α j(n)R j

n(t)

Rn(t)
dt (3.10)

where

α j(n) =
{ ∑p

r= j αr(n)cr− j(n + 1)σ(j, r), 1 6 j 6 p∑p
r=0 αr(n)cr(n + 1)σ(0, r), j = 0

α j(0) = α j and σ(j, r) is the coefficient of the x j term in (x+
√

x2−1)r+(x−
√

x2−1)r

2 , assuming, of
course, that the limit exists [5]. What happens to Rn as n → ∞? One nice property of the
bn’s and cn’s is that b < b1 < · · · < c1 < c. Thus, this sequence is monotonic and bounded.
Hence, the limit exists, and in fact limn→∞ bn = limn→∞ cn. We call this limit the arithmetic-
geometric mean and we get

lim
n→∞

Rn = lim
n→∞

√
b2

n cos2 t + c2
n sin2 t = lim

n→∞

√
b2

n cos2 t + c2
n sin2 t = lim

n→∞
bn.

So the limit of the integrand can be written strictly in terms of bn:

lim
n→∞

∑p
j=0 α j(n)R j

n(t)

Rn(t)
= lim

n→∞

∑p
j=0 α j(n)b j

n

bn
.

Now we can see the integrand is independent of t so that

∫ π/2

0

H(R)
R

dt = lim
n→∞

∑p
j=0 α j(n)b j

n

bn

π

2
. (3.11)

3.2.3. Convergence of the limit. Let us show that the integrand in (3.10) converges as
n→ ∞. Recall that we can write the vector potential as

I(b, c) =
aI
π

∫ π/2

0

H(R)
R

dt, (3.12)

where H(R) = α0 + α2R2 and α2 =
2

b2−c2 , α0 = −
b2+c2

b2−c2 .
The first iteration gives us

H1(R1) = (α0 − α2bc) + 2α2R2
1.

Thus, α0(n+1) = α0(n)−α2(n)b2
n+1 and α2(n+1) = 2α2(n) where α0(0) = a0 and α2(0) = a2.

So we get α2(n + 1) = 2n+1α2(0). Then, α0(n + 1) becomes α0(n) − 2nα2(0)b2
n+1. We know

that c2
n+1 → b∞, a finite constant independent of t. Therefore, α0(n + 1) ∼ α0(n) − 2nα2(0)b2

∞

and the general solution to this difference equation becomes α0(n) = β − 2nα2(0)c2
∞, where

β is a constant (it is the solution to the homogeneous equation α0(n + 1) = α0(n)). Now it is
clear that α0(n) + α2(n)R2

n converges in the limit. Hence, the solution to (3.5) is

I(b, c) =
aI
π

lim
n→∞

π

2
α0(n) + α2(n)b j

n

bn
. (3.13)

280 Evaluation of Magnetic Vector Potential

3.2.4. Coding up the Integral. Using the recursive algorithm in (3.13) with α0(n+1) =
α0(n)− α2(n)b2

n+1 and α2(n+ 1) = 2α2(n) we can solve for the limit once we determine α0(0)
and α2(0). Since α0(0) = − b2+c2

b2−c2 and α2(0) = 2
b2−c2 we get

α2 =
−1

2aν sinψ
α0(0) = −α2ν

2 − a2.

Because of quadratic convergence of this algorithm, we do not need to take large values of n
to approximate the integral [5].

3.3. Magnetic Vector Potential within the loop: 2D model. So far, we have assumed
that the current has been running along an infinitesimally small volume in a circular path.
This of course leads to a singularity when the field point approaches any of the source points
(see equation (2.1)). What is really happening, however, is that the current is flowing through
a wire with non-zero volume. Let us assume that the current loop has radius ε and the current
density in the loop is I/(πa2). How do we calculate the vector potential within the circular
loop source? This is a common problem for numerical methods based on free space Green’s
functions and some sort of regularization is always required to handle the singularity. Further-
more, since we are using the potential as a driving field we know that any assumption that we
make about the current density in the wire is really not correct. We must make some simple,
fast and useful approximation to compute the potential whenever the field point is close to a
source point. Outside the loop, the analytic expression derived above gives an excellent value
of the vector potential. We assume that as we approach the loop the vector potential is given
by this outer solution. However, when we are inside the loop, we will find a relation between
the vector potential and J.

Recall that ∇× (∇×A) = ∇×B = J, where J is our current density and B is the magnetic
field. For J , 0 within the loop, this gives us a differential equation for the vector potential,
A. Let us calculate this differential equation. Recall that A has a component only in the ϕ̂
direction and is a function of r and z (ν =

√
r2 + z2). Then,

∇ × A = −
∂Aϕ

∂z
r̂ +

(
∂Aϕ

∂r
+

Aϕ

r

)
z

Therefore,

∇ × (∇ × A) =
(
−
∂2Aϕ

∂z2 −
∂2Aϕ

∂r2 −
1
r
∂Aϕ

∂r
+

Aϕ

r2

)
ϕ̂

Hence,

−J =
(
∂2Aϕ

∂z2 +
∂2Aϕ

∂r2 +
1
r
∂Aϕ

∂r
−

Aϕ

r2

)
ϕ̂. (3.14)

For points within the loop, we will use a quadratic interpolating polynomial in R2 to
approximate the vector potential. The key here will be to use the above differential equation
to determine the coefficients of this interpolating polynomial.

Let us take a cross section of the wire in the yz plane (see Figure 3.2). Our goal is to
obtain a constant coefficient interpolating polynomial of the form

Aϕ = A0,0 +
∂Aϕ

∂r
(r − a) +

∂Aϕ

∂z
(z − c0) +

1
2
∂2Aϕ

∂r2 (r − a)2 +
1
2
∂2Aϕ

∂z2 (z − c0)2 (3.15)

K. Chowdhary and A.C. Robinson 281

x y

z

−y

c0

ε

a
A(0,0)

A(−ε,0)

A(0,ε)

A(ε,0)

A(0,−ε)

Circular Loop
rp

F. 3.2. This is a cross-section in the yz plane of a circular loop centered about the z axis.

The value of the potential at the center of this cross-section is A0,0, where the subscripts
represent local r and z coordinates, respectively. We can approximate these coefficients by
first computing values for Aε,0, A−ε,0, A0,ε, and A0,−ε from equation 3.3. It follows that

∂2Aϕ

∂z2 =
A0,ε − 2A0,0 + A0,−ε

ε2 ,

∂2Aϕ

∂r2 =
Aε,0 − 2A0,0 + A−ε,0

ε2 ,

∂Aϕ

∂r
=

Aε,0 − A−ε,0
2ε

,

∂Aϕ

∂z
=

A0,ε − A0,−ε

2ε
.

It remains to show how to determine A0,0. Using (3.14) and plugging in our quadratic inter-
polant at (a, c0), we obtain

A0,ε − 2A0,0 + A0,−ε

ε2 +
Aε,0 − 2A0,0 + A−ε,0

ε2 +
1
a

Aε,0 − A−ε,0
2ε

−
A0,0

a2 = −J.

where J = I
πε2 . Solving for A0,0 we obtain

A0,0 =

(I
π
+ (A0,ε + A0,−ε) + (Aε,0 + A−ε,0) +

ε

2a
(Aε,0 − A−ε,0)

) (
4 +

ε2

a2

)−1

Figure 3.3 illustrates the vector potential for the cross-section shown in Figure 3.2.
In general, we can evaluate the vector potential for any field point in a 3D model (Figure

3.4(a)), by transforming the problem into a 2D model (Figure 3.4(b))by taking the appropriate
slice along the radial direction of the loop.

4. Implementation.

4.1. Change of Basis. Up till now, we have been using a circular loop source that is
centered about the z axis, parallel to the xy plane (see Figure 4.1(a)). What if we have a
circular loop that is angled or tilted as in Figure 4.1(b). If we choose an arbitrary field point
in 3D space, how are we going to calculate the vector potential? First, we have to consider
whether the field point is within the radius of the loop or not. If this distance is less than the

282 Evaluation of Magnetic Vector Potential

F. 3.3. Illustration of the magnitude of the magnetic vector potential for a 2D model.

(a) 3D problem
→

x

y

z

c0

ε

(b) 2D problem

F. 3.4. Transforming a 3D problem into a 2D problem

radius, the field point is within the loop and we can use a quadratic interpolant to determine
the vector potential. If the distance is greater than the radius, the field point is outside the
loop and we can use our recursive algorithm to evaluate the vector potential.

For a field point within the loop, in order to obtain a quadratic interpolant we need to
determine the point on the loop closest to the field point (i.e. we need to determine the
location of A0,0) and the location of the points Aε,0, A−ε,0, A0,ε, and A0,−ε. For a field point
outside the loop, we need to determine the relative distance from the center of the loop to the
field point (i.e. we need to calculate ν and sinψ). In both cases, we can perform a change of
basis to transform 4.1(b) into 4.1(a) in order to determine these critical points.

Given the normal vector to the loop’s plane, n̂, we can find a perpendicular vector, x′,
satisfying n̂ · (x′ − c0) = 0, where c0 is the center of the loop. Once we have x′, we can
find another vector, y′, orthogonal to x′ and n̂, given by n̂ × x′. Normalizing x′ and y′,
and using n̂ for our new z axis, we have our desired orthonormal basis for the angled loop.
Now, for example, we can easily compute any point on the angled loop with the equation
(x′)2 + (y′)2 = a2.

4.2. Results. The figures in 4.2 illustrate the magnitude of the vector potential for three
different circular loop orientations. Figure 4.2(a) illustrates the magnitude of the vector po-
tential given a circular loop that lies parallel to the xy plane and is centered at the point
(0, 0, .5). Figure 4.2(b) shows the magnitude of the vector potential for a loop parallel to the
xy plane, but centered at (.5, 0, .5). Finally, Figure 4.2(c) shows the magnitude of the vector
potential for a circular loop centered at (.5, 0, .5), whose normal to the loop’s plane is the vec-
tor (1, 0, 1). Clearly, we can see a high magnitude band, shown in red, for field points within
the loop, which is appropriate given that the integrand in equation (3.3) is greatest for exactly

K. Chowdhary and A.C. Robinson 283

(a) Flat circular loop (b) Angled circular loop

F. 4.1. Different orientations of the circular loop.

these points.

(a) Flat Loop (b) Off-centered Loop (c) Angled Loop

F. 4.2. Magnitude of the vector potential for different circular loop orientations

4.3. Error and Performance. Prior to implementing the methods outlined in this paper,
we used the midpoint integration method to approximate equation (3.3) for field points outside
the loop, introducing a regularization to handle the singularity as the field points approach the
core of the loop. While the convergence for the midpoint method is of order h2, our new
method provides a much simpler, quadratically converging, recursive algorithm to obtain an
exact solution to the vector potential, with an error on the order of 10−10 [1].

For field points approaching the interior of the loop, a smaller h value was needed to
obtain an approximation that differed from the true vector potential (i.e. the value obtained
using the recursive algorithm) by an order of 10−10, whereas field points further away from
the interior of the loop produced approximations on the same order of accuracy using sig-
nificantly larger h values. Thus, in order to obtain an error on the order of 10−10 using the
midpoint method, we need to choose a relatively small h value for all evaluation points. The
recursive algorithm, however produces an exact value to the vector potential at all points out-
side the loop, with an error of 10−10, in at most ten iterations! The simplicity and quickness of
the recursive algorithm resulted in a significantly faster computation time for the evaluation
of the vector potential.

In the table below, we compare the computation times for the evaluation of the vector po-
tential between the midpoint method and the recursive algorithm. The h used in the midpoint
method is chosen small enough so as to differ from the exact solution (the solution obtained
using our recursive algorithm) by at worst 10−10 at all evaluation points.

The first column describes the number of of field points to be evaluated and the last

284 Evaluation of Magnetic Vector Potential

T 4.1
Performance times for the Aϕ Calculation

User CPU Time (sec)
Field Points Recursive Algorithm Midpoint Method Ratio
2.842 × 104 7.000 × 10−2 5.400 × 10−1 7.71
6.286 × 104 1.100 × 10−1 1.200 10.91
2.170 × 105 3.400 × 10−1 4.300 12.65
7.789 × 105 1.430 1.491 × 101 10.43
1.604 × 106 3.300 3.032 × 101 9.19

(Avg) 10.18

column shows the ratio between the evaluation times of the midpoint method and the recursive
algorithm. On average, the recursive algorithm is about 10 times faster!

Note that the regularized kernel approach does not attempt to carefully approximate the
current density within the loop. Thus, not only does our method provide a faster and more
accurate computation for field points outside the loop, but our quadratic interpolant provides
an improved approximation for field points within the loop.

5. Conclusions. In this paper, we discussed the derivation and implementation of a fast
and accurate method for the evaluation of a vector potential associated with a circular loop
current source field. We provided a quadratic interpolation polynomial to evaluate the vector
potential for field points inside the finite cored circular loop. For field points outside the loop,
we used a rapidly converging method associated with elliptic integrals to evaluate the vector
potential. We have implemented this functionality into the ALEGRA code in order to provide
2D and 3D circular loop source fields for magnetic diffusion simulations.

REFERENCES

[1] G. A  B. B, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the
Ladies Diary, American Mathematical Monthly, August-September (1988), pp. 585–608.

[2] D. J. G, Introduction to Electrodynamics: Third Edition, Prentice Hall, 1999.
[3] T. M, T. B, M. D, C. G, T. H, H. H, R. L, T. M, M. M,

B. O, A. R, S. S, T.G.T, E. Y, R. V, M. C, B. J, M. D. K,
 D. S, Towards a predictive MHD simulation capability for designing hypervelocity magnetically-
driven flyer plates and PW class z-pinch x-ray sources on Z and ZR. Proceedings Megagauss XI Confer-
ence, Imperial College, London, England, 2006.

[4] A. C. R  C. J. G, Three-dimensional z-pinch wire array modeling with ALEGRA-HEDP, Com-
puter Physics Communications, 164 (2004), pp. 408–413.

[5] J. W, Computation with Recurrence Relations, Pitman Advanced Publishing Program, 1984.

